ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多期无人机影像对比的滑坡变形特征和形成机理分析

程强 周兴泉 张肖

程强,周兴泉,张肖. 基于多期无人机影像对比的滑坡变形特征和形成机理分析−以四川新-金公路唐家湾滑坡为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-11 doi: 10.16031/j.cnki.issn.1003-8035.202303027
引用本文: 程强,周兴泉,张肖. 基于多期无人机影像对比的滑坡变形特征和形成机理分析−以四川新-金公路唐家湾滑坡为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-11 doi: 10.16031/j.cnki.issn.1003-8035.202303027
CHENG Qiang,ZHOU Xingquan, . Kinematics and mechanism analysis of the Tangjiawan landslide based on muti-phase UAV photogrammetry—A case study of the Tangjiwan landslide of the Xin-to-Jinyang county highway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-11 doi: 10.16031/j.cnki.issn.1003-8035.202303027
Citation: CHENG Qiang,ZHOU Xingquan, . Kinematics and mechanism analysis of the Tangjiawan landslide based on muti-phase UAV photogrammetry—A case study of the Tangjiwan landslide of the Xin-to-Jinyang county highway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-11 doi: 10.16031/j.cnki.issn.1003-8035.202303027

基于多期无人机影像对比的滑坡变形特征和形成机理分析

doi: 10.16031/j.cnki.issn.1003-8035.202303027
基金项目: 四川省交通运输科技项目(资助号:2020-A-01),四川省科技计划资助(资助号:2022YFG0141)
详细信息
    作者简介:

    程强:程 强(1972-),男,河北滦县人,博士,教高,主要从事山区公路工程勘察设计及研究。E-mail:chengqiangy@163.com

  • 中图分类号: 中图分类号: 文献标识码:A 文章编号:

Kinematics and mechanism analysis of the Tangjiawan landslide based on muti-phase UAV photogrammetry—A case study of the Tangjiwan landslide of the Xin-to-Jinyang county highway in Sichuan Province

  • 摘要: 研究滑坡变形特征对于分析滑坡形成机理和制定防治措施至关重要。本文以工程诱发的唐家湾滑坡为研究对象,通过工程施工前后的6期无人机影像得到高分辨率DOM,基于相邻两期DOM中识别的特征点作为监测点,根据其位置的变化得出地表位移矢量数据,进而结合地质勘探和深部位移监测分析滑坡变形特征和形成机理。研究表明工程建设前滑坡区无明显变形(第1个观测周期),工程施工后的第2观测周期(20210315—20210606)、第3 观测周期(20210606—20210908)和第4观测周期(20210908—20211103)滑坡主滑区平均变形速率分别为53.0,103.2和62.5 mm·d−1,至第5观测周期(20211103—20220103)变形速率趋于0。第2观测周期的滑坡后缘的弃渣堆载是滑坡的直接触发因素,降雨促进了滑坡变形的发展,而随着雨季的结束和前缘的堆载反压滑坡变形速率逐渐降低。本文研究表明利用多期无人机高清影像可获取大范围、长时序地表变形信息,可作为一种有效的滑坡变形监测手段。
  • 图  1  研究区地形地质图

    Figure  1.  Topographic and geological map of the study area

    图  2  滑坡发生前后的影像图及滑坡分区图

    Figure  2.  Images of Pre- and post-sliding and zoning map of Tangjiawan landslide

    图  3  滑坡剖面图(图2b中A-A’)

    Figure  3.  Longitudinal profile of the landslide (section A-A’ in Fig. 2b)

    图  4  典型岩芯照片

    Figure  4.  Typical drilling core sample photos

    图  5  基于相邻两期DOM对比得出的各观测周期位移矢量图

    Figure  5.  Displacement vector maps for each observation period based on comparison of Consecutive DOMs

    图  6  滑坡左侧边界对比图

    Figure  6.  Comparison images of the left boundary of the landslide

    图  7  地表变形监测点时间~水平位移曲线

    Figure  7.  Time vs. horizontal displacement curves for surface deformation monitoring points

    图  8  累计日降水量与平均变形速率

    Figure  8.  Cumulative daily precipitation vs. average deformation rates

    表  1  数据汇总

    Table  1.   Summary of the data.

    阶段 使用设备 像控设置 影像分辨率 获取时间
    滑前直升机搭载飞思相机(1亿像素)
    和Optech eclipse 激光雷达
    沿线测绘
    地面控制点
    <10 cm2018年5月15日
    DJI Mavic2勘察期间
    测绘控制点
    <3 cm2019年3月26日
    滑后DJI Mavic2滑坡周边4个
    地面控制点
    <3 cm2021年6月6日
    DJI Mavic2<3 cm2021年9月8日
    DJI Mavic2<3 cm2021年11月3日
    DJI Mavic2<3 cm2022年1月3日
    下载: 导出CSV

    表  2  各观测周期的观测时长和监测点数量

    Table  2.   Observation period duration and number of monitoring points for each observation period

    观测期 时间段落 时间间隔/天 监测点数量/个
    1 20180515-20190326 325 17
    2 20190326-20210606 803 7
    3 20210606-20210908 94 25
    4 20210908-20211103 56 68
    5 20211103-20220103 61 49
    下载: 导出CSV

    表  3  各监测周期监测点平均变形量及变形速率

    Table  3.   Average displacement vectors and Average deformation rates of monitoring points for each monitoring period

    分区 数据类型 第1观测期
    (2018.05.15-
    2019.03.26)
    第2观测期
    (2019.03.26-
    2021.06.06)
    第3观测期
    (2021.06.06-
    2021.09.08)
    第4观测期
    (2021.09.08-
    2021.11.03)
    第5观测期
    (2021.11.03-
    2022.01.03)
    I区 平均变形量/m <0.1 / 3.8 0.7 /
    平均变形速率/(mm·d−1 0 / 40.4 12.5 /
    II-1区 变形量平均值/m <0.1 / / 3.2 0.14
    平均变形速率/(mm·d−1 0 / / 57.1 0.002
    II-2区 变形量平均值/m <0.1 4.4 9.7 3.5 0.09
    平均变形速率/(mm·d−1 0 53.0 103.2 62.5 0
      注:/标示该区内施工导致地形变化,无法取得匹配监测点;第2观测周期变形速率计算起始时间为工程开始施工的2021年3月15日。
    下载: 导出CSV
  • [1] 贾会会,薛建志,郭利召,等. “空天地”一体化技术在采空区形变监测中的应用[J]. 中国地质灾害与防治学报,2023,34(3):69 − 82. [JIA Huihui,XUE Jianzhi,GUO Lizhao,et al. Application of combined space,arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):69 − 82. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202202015

    JIA Huihui, XUE Jianzhi, GUO Lizhao, et al. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control, 2023, 343): 6982. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202202015
    [2] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,2020,28(2):360 − 374. [XU Qiang. Understanding the landslide monitoring and early warning:consideration to practical issues[J]. Journal of Engineering Geology,2020,28(2):360 − 374. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-025

    XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 282): 360374. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-025
    [3] 刘春,万红,李巍岳,等. 基于无人机影像的大型滑坡区域精细地形构建研究[J]. 井冈山大学学报(自然科学版),2015,36(1):1 − 7. [LIU Chun,WAN Hong,LI Weiyue,et al. The research on construction of large-scale landslide precise terrain based on uav images[J]. Journal of Jinggangshan University (Natural Science),2015,36(1):1 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-8085.2015.01.001

    LIU Chun, WAN Hong, LI Weiyue, et al. The research on construction of large-scale landslide precise terrain based on uav images[J]. Journal of Jinggangshan University (Natural Science), 2015, 361): 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-8085.2015.01.001
    [4] 王俊豪,魏云杰,梅傲霜,等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质,2021,48(2):388 − 401. [WANG Junhao,WEI Yunjie,MEI Aoshuang,et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China,2021,48(2):388 − 401. (in Chinese with English abstract) doi: 10.12029/gc20210204

    WANG Junhao, WEI Yunjie, MEI Aoshuang, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China, 2021, 482): 388401. (in Chinese with English abstract) doi: 10.12029/gc20210204
    [5] 孔嘉旭,谷天峰,孙萍萍,等. 基于多期无人机影像的黑方台硅化厂滑坡形态变形演化研究[J]. 干旱区资源与环境,2021,35(1):100 − 107. [KONG Jiaxu,GU Tianfeng,SUN Pingping,et al. Research on deformation evolution of landslides in Heifangtai silicified plant based on multi-stage UAV images[J]. Journal of Arid Land Resources and Environment,2021,35(1):100 − 107. (in Chinese with English abstract) doi: 10.13448/j.cnki.jalre.2021.015

    KONG Jiaxu, GU Tianfeng, SUN Pingping, et al. Research on deformation evolution of landslides in Heifangtai silicified plant based on multi-stage UAV images[J]. Journal of Arid Land Resources and Environment, 2021, 351): 100107. (in Chinese with English abstract) doi: 10.13448/j.cnki.jalre.2021.015
    [6] 彭大雷,许强,董秀军,等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展,2017,32(3):319 − 330. [PENG Dalei,XU Qiang,DONG Xiujun,et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science,2017,32(3):319 − 330. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2017.03.0319

    PENG Dalei, XU Qiang, DONG Xiujun, et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science, 2017, 323): 319330. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2017.03.0319
    [7] 张欢,巨能攀,陆渊,等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质,2021,48(6):171 − 179. [ZHANG Huan,JU Nengpan,LU Yuan,et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology,2021,48(6):171 − 179. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008010

    ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 486): 171179. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008010
    [8] 陈巧,袁飞云,付霞,等. 无人机摄影测量技术在阿娘寨滑坡应急调查中的应用[J]. 测绘通报,2023(1):77 − 83. [CHEN Qiao,YUAN Feiyun,FU Xia,et al. Application of unmanned aerial vehicle photogrammetry technology in emergency investigation of Aniangzhai landslide[J]. Bulletin of Surveying and Mapping,2023(1):77 − 83. (in Chinese)

    CHEN Qiao, YUAN Feiyun, FU Xia, et al. Application of unmanned aerial vehicle photogrammetry technology in emergency investigation of Aniangzhai landslide[J]. Bulletin of Surveying and Mapping, 20231): 7783. (in Chinese)
    [9] 赵婷婷,高文娟,李志林,等. 实景三维技术在“8•8”九寨沟地震地质灾害快速调查中的应用[J]. 中国地质灾害与防治学报,2023,34(3):93 − 99. [ZHAO Tingting,GAO Wenjuan,LI Zhilin,et al. Application of real-scene 3D technology in the rapid survey of geological disasters after the “8•8” Jiuzhaigou earthquake[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):93 − 99. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202209016

    ZHAO Tingting, GAO Wenjuan, LI Zhilin, et al. Application of real-scene 3D technology in the rapid survey of geological disasters after the “8•8” Jiuzhaigou earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2023, 343): 9399. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202209016
    [10] PETERNEL T,KUMELJ Š,OŠTIR K,et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements[J]. Landslides,2017,14(1):395 − 406. doi: 10.1007/s10346-016-0759-6
    [11] LARIBI A,WALSTRA J,OUGRINE M,et al. Use of digital photogrammetry for the study of unstable slopes in urban areas:case study of the El Biar landslide,Algiers[J]. Engineering Geology,2015,187:73 − 83. doi: 10.1016/j.enggeo.2014.12.018
    [12] CHENG Qiang,YANG Yinghui,DU Yi. Failure mechanism and kinematics of the Tonghua landslide based on multidisciplinary pre- and post-failure data[J]. Landslides,2021,18(12):3857 − 3874. doi: 10.1007/s10346-021-01770-x
    [13] SASAKI Y,FUJII A,ASAI K. Soil creep process and its role in debris slide generation:Field measurements on the north side of Tsukuba Mountain in Japan[J]. Developments in Geotechnical Engineering,2000,84:199 − 219.
    [14] REGMI N R,WALTER J I. Detailed mapping of shallow landslides in eastern Oklahoma and western Arkansas and potential triggering by Oklahoma earthquakes[J]. Geomorphology,2020,366:106806. doi: 10.1016/j.geomorph.2019.05.026
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 录用日期:  2023-09-27
  • 修回日期:  2023-06-30
  • 网络出版日期:  2023-10-08

目录

    /

    返回文章
    返回