ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外免像控无人机航测软件在数字滑坡中的应用效果对比

何雨健 窦杰 王协康 付永虎 马豪 汪恒

何雨健,窦杰,王协康,等. 国内外免像控无人机航测软件在数字滑坡中的应用效果对比−以三峡库区黄土坡滑坡为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-15 doi: 10.16031/j.cnki.issn.1003-8035.202303043
引用本文: 何雨健,窦杰,王协康,等. 国内外免像控无人机航测软件在数字滑坡中的应用效果对比−以三峡库区黄土坡滑坡为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-15 doi: 10.16031/j.cnki.issn.1003-8035.202303043
HE Yujian,DOU Jie,WANG Xiekang,et al. A Comparative study on the application effects of image-free control uav data processing software in digital landslides: A case study of the Huangtupo landslide in the three gorges reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-15 doi: 10.16031/j.cnki.issn.1003-8035.202303043
Citation: HE Yujian,DOU Jie,WANG Xiekang,et al. A Comparative study on the application effects of image-free control uav data processing software in digital landslides: A case study of the Huangtupo landslide in the three gorges reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-15 doi: 10.16031/j.cnki.issn.1003-8035.202303043

国内外免像控无人机航测软件在数字滑坡中的应用效果对比

doi: 10.16031/j.cnki.issn.1003-8035.202303043
基金项目: 国家自然科学基金重大项目课题(No. 42090054);四川大学水力学与山区河流开发保护国家重点实验室基金资助项目(Nos. SKHL1903, SKHL2003);湖北省创新群体(No. 2022CFA002)。
详细信息
    作者简介:

    何雨健(1999-),男,四川人,硕士,主要从事无人机在地质灾害中的应用研究

    通讯作者:

    窦 杰,男,博导,研究员,主要从事地质灾害大数据智能管控研究。E-mail:doujie@cug.edu.cn

A Comparative study on the application effects of image-free control uav data processing software in digital landslides: A case study of the Huangtupo landslide in the three gorges reservoir area

  • 摘要: 滑坡灾害是中国最常见的地质灾害之一,严重威胁人民生命财产安全,实现数字滑坡的高效、便捷和准确是滑坡防灾减灾的关键环节。近年来,由于高效率和低成本等优势,免像控无人机航测技术已被逐渐应用于数字滑坡分析领域。本文旨在为探讨基于免像控技术的各航测软件在滑坡地形处理中的优劣势,以及应用于数字滑坡技术中的可行性。本研究选取长江三峡库区的大型黄土坡滑坡为研究对象,借助大疆PHANTOM 4RTK无人机获取研究区高分辨率遥感数据,采用四款国内外常用的专业航测处理软件Pix4D mapper、Photoscan、Context Capture以及DJI Terra分别进行数字化处理,并从正射图质量、精度误差、耗时及操作难度四个维度进行对比分析并应用。研究结果表明:(1)在单体滑坡航拍面积高达2.23 km2的情况下,Pix4D mapper软件生成的正射图质量效果最好且能达到大比例尺制图要求;(2)在精度误差上,DJI Terra与Pix4D mapper表现最好,其中20个检查点的平面中误差均未超过10 cm,垂直中误差均未超过30 cm,综合对比结果发现在较大面积的单体滑坡灾害分析中Pix4D mapper软件最具优势;(3)基于数字滑坡图件遥感解译获取了滑坡基本数字信息并通过GIS软件将滑坡数字信息储存起来建立滑坡灾害大数据库。综上,免像控无人机航测技术在今后的滑坡灾害大数据库的快速建立具有巨大优势并将成为重要的研究方向之一,为滑坡灾害防治与应急调查快速分析提供技术与数据支撑。
  • 图  1  研究区概况: (a)地理位置;(b)黄土坡滑坡;(c)滑坡位移监测

    Figure  1.  Study area overview: (a) geographic location; (b) Huangtupo landslide; (c) Landslide displacement monitoring

    图  2  外业数据采集现场图

    Figure  2.  Field image of on-site data acquisition

    图  3  技术流程图

    Figure  3.  Technical workflow diagram

    图  4  正射图整体与局部细节对比图

    Figure  4.  Comparison of orthophoto overall and detailed views

    图  5  平面方向与垂直方向精度对比图

    Figure  5.  Comparison of accuracy in planar and vertical directions

    图  6  散点分布图

    Figure  6.  Scatter plot of precision errors

    图  7  遥感成果图:(a)正射图像;(b)三维模型;(c)DSM模型及剖面线图

    Figure  7.  Remote Sensing Results: (a) DOM; (b) three-dimensional model; (c) DSM and profile line diagram

    图  8  其他数字产品:(a)DEM模型;(b)等高线模型;(c)临江一号滑坡剖面模型;(d)数值模拟结果

    Figure  8.  Other digital products (a) DEM model; (b) Contour map; (c) Profile model of Linjiang No.1 landslide; (d) Results of factor safety (Fs) numerical simulation analysis (DEM)

    表  1  各软件主要优势与数字化功能

    Table  1.   Key advantages and digital features of each software

    软件名称 主要优势 数字化功能 其他信息
    Pix4D Mapper 操作简单、界面简洁;能自动识别出照片中所对应的相机信息;兼容性强支持任意影像的数据处理,输出格式类型丰富[25] 软件可识别EXIF ID;可通过点云编辑器可实现手动选择以删除点云 瑞士Pix4D公司研发;最早于2011年推出测试
    Photoscan 空三质量好;支持批量处理;支持多种文件格式;对初始数据的容错度较高;支持二次开发;支持全景拼接[26] 测量距离与坐标点信息; 俄罗Agisoft公司研发;2006年开始专注于计算机视觉技术的创新与研究
    Context Capture 三维建模能力强;数据源兼容性广;支持切块处理;支持生成多种三维格式[27] 提供测量功能如点坐标、线段距离以及面积与体积的计算。 其前身为法国Acute3D公司,后被美国Bentley公司收购;最早于2011年发行测试版
    DJI Terra 处理任务功能丰富;支持实时建模;支持集群计算;提供多种场景建模方式。 支持处理生成LAS格式的点云数据 中国大疆创新公司研发;于2019年首发
    下载: 导出CSV

    表  2  无人机飞行参数表

    Table  2.   UAV Flight Parameters

    参数 信息
    区域名称 巴东县新城区的黄土坡滑坡
    飞行平台 大疆Phantom4 RTK
    无人机GNSS精度 垂直 1.5 cm + 1 ppm(RMS);
    水平 1 cm + 1 ppm(RMS)
    飞行器重量 约1.4 KG
    相机型号 FC6310R
    单次飞行时间 约30分钟
    影像分辨率/pix 5472×3648
    像素大小 13.2 mm
    航拍面积 2.23 km2
    平均航高 120 m
    航线数 43条
    旁向重叠度 70%
    航向重叠度 80%
    航飞路线方式 “之”字形
    下载: 导出CSV

    表  3  正射图像元大小对比表

    Table  3.   Comparison of orthophoto pixel sizes

    软件名称DOM像元尺寸(cm)
    Photoscan7.39
    DJI Terra8.70
    Context Capture9.31
    Pix4D mapper11.05
    下载: 导出CSV

    表  4  软件精度误差对比

    Table  4.   Comparison of software precision errors

    软件 Δx(m) Δy(m) ΔS(m) Δz(m)
    Pix4D mapper 0.07 0.06 0.09 0.28
    Photoscan 0.07 0.08 0.10 0.82
    Context Capture 0.11 0.16 0.19 0.25
    DJI Terra 0.04 0.04 0.06 0.19
    下载: 导出CSV

    表  5  山区摄影测量技术精度要求

    Table  5.   Accuracy requirements for aerial photogrammetry techniques

    比例尺 正射影像图平面误差(m) 数字高程模型高程误差(m)
    1∶500 0.4 0.5
    1∶1000 0.8 0.7
    1∶2000 1.6 1.2
    下载: 导出CSV

    表  6  软件耗时对比

    Table  6.   Comparison of processing time for software

    软件耗时(min)
    Pix4D mapper725
    Photoscan4658
    Context Capture2580
    DJI Terra345
    下载: 导出CSV

    表  7  软件操作性对比

    Table  7.   Comparison of software usability

    软件名称操作难度专业知识要求
    Pix4D mapper简单
    Context Capture中等
    Photoscan中等
    DJI Terra简单较低
    下载: 导出CSV

    表  8  专家评分法结果

    Table  8.   Results of Expert rating method

    指标权数得分
    等级
    (最好1.0分 / 好0.8分 / 较好0.6分 /一般0.5分 / 差0.1分)
    Pix4D mapperContext CapturePhotoscanDJI Terra
    分辨率0.1一般
    (0.05)
    较好
    (0.06)
    最好
    (0.1)

    (0.08)
    匀色、纹理状态0.5最好
    (0.5)
    较好
    (0.3)
    较好
    (0.3)
    一般
    (0.25)
    误差精度0.25
    (0.2)
    一般
    (0.125)

    (0.025)
    最好
    (0.25)
    耗时0.15
    (0.12)
    一般
    (0.075)

    (0.015)
    最好
    (0.15)
    合计1.000.870.560.440.73
    下载: 导出CSV
  • [1] 唐辉明, 李长冬, 龚文平, 等. 滑坡演化的基本属性与研究途径[J]. 地球科学, 2022, 47(12): 4596 − 4608.

    TANG Huiming, LI Changdong, GONG Wenping, et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)
    [2] NI Weida, ZHAO Liuyuan, ZHANG Lele, et al. Coupling progressive deep learning with the AdaBoost framework for landslide displacement rate prediction in the Baihetan Dam Reservoir, China[J]. Remote Sensing, 2023, 15(9): 2296.
    [3] 窦杰, 向子林, 许强, 等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 2023, 48(5): 1657 − 1674.

    DOU Jie, XIANG Zilin, XU Qiang, et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 2023, 48(5): 1657 − 1674. (in Chinese with English abstract)
    [4] 王治华. 数字滑坡技术及其应用[J]. 现代地质, 2005, 19(2): 157 − 164.

    WANG Zhihua. Progress and applications for digital landslide[J]. Geoscience, 2005, 19(2): 157 − 164. (in Chinese with English abstract)
    [5] 吕杰堂, 王治华, 周成虎. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探[J]. 地球学报, 2002, 23(4): 363 − 368.

    LYU Jietang, WANG Zhihua ZHOU Chenghu ], WANG Zhihua, ZHOU Chenghu. A tentative discussion on the monitoring of the yigong landslide-blocked lake with satellite remote sensing technique[J]. Acta Geosicientia Sinica, 2002, 23(4): 363 − 368. (in Chinese with English abstract)
    [6] 程乙峰, 刘志辉. 3S技术下滑坡危险性区划及监测[J]. 测绘科学, 2016, 41(8): 95 − 100.

    CHENG Yifeng, LIU Zhihui. Landslide hazard zoning and monitoring with 3S technology[J]. Science of Surveying and Mapping, 2016, 41(8): 95 − 100. (in Chinese with English abstract)
    [7] CHANG K T, MERGHADI A, YUNUS A P, et al. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques[J]. Scientific Reports, 2019, 9: 12296.
    [8] MERGHADI A, YUNUS A P, DOU Jie, et al. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225.
    [9] EKER R, AYDıN A, HÜBL J. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study[J]. Environmental Monitoring and Assessment, 2018, 190(1): 28.
    [10] DOU Jie, YUNUS A P, MERGHADI A, et al. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning[J]. Science of the Total Environment, 2020, 720: 137320.
    [11] 丁要轩, 龚文平, 程展, 等. 基于多期无人机影像的滑坡地表竖向变形测量模型试验与工程应用[J]. 地质科技通报, 2023, 42(2): 267 − 278.

    DING Yaoxuan, GONG Wenping, CHENG Zhan, et al. Model tests of the vertical ground deformation measurement of landslide based on multiple UAV images and its application[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 267 − 278. (in Chinese with English abstract)
    [12] 郭晨, 许强, 彭双麒, 等. 无人机摄影测量技术在金沙江白格滑坡应急抢险中的应用[J]. 灾害学, 2020, 35(1): 203 − 210.

    GUO Chen, XU Qiang, PENG Shuangqi, et al. Application research of UAV photogrammetry technology in the emergency rescue of baige landslide[J]. Journal of Catastrophology, 2020, 35(1): 203 − 210. (in Chinese with English abstract)
    [13] KARANTANELLIS E, MARINOS V, PAPATHANASSIOU G. Multitemporal landslide mapping and quantification of mass movement in red beach, Santorini Island using lidar and UAV platform[C]//Shakoor A, Cato K. IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 - Volume 1. Cham: Springer, 2019: 163 − 169.
    [14] ROSSI G, TANTERI L, TOFANI V, et al. Multitemporal UAV surveys for landslide mapping and characterization[J]. Landslides, 2018, 15(5): 1045 − 1052.
    [15] TURNER D, LUCIEER A, DE JONG S. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)[J]. Remote Sensing, 2015, 7(2): 1736 − 1757.
    [16] VALKANIOTIS S, PAPATHANASSIOU G, GANAS A. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece[J]. Engineering Geology, 2018, 245: 141 − 152.
    [17] 周小龙, 贾强, 石鹏卿, 等. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用[J]. 中国地质灾害与防治学报, 2022, 33(1): 107 − 116.

    ZHOU Xiaolong, JIA Qiang, SHI Pengqing, et al. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 107 − 116. (in Chinese with English abstract)
    [18] 陈巧, 袁飞云, 付霞, 等. 无人机摄影测量技术在阿娘寨滑坡应急调查中的应用[J]. 测绘通报, 2023(1): 77 − 83.

    CHEN Qiao, YUAN Feiyun, FU Xia, et al. Application of UAV photogrammetry technology in emergency investigation of Aniangzhai landslide[J]. Bulletin of Surveying and Mapping, 2023(1): 77 − 83. (in Chinese with English abstract)
    [19] LI CHANGCHUN1 Z G, CHANGE 2 E, NATURAL DISASTER M O E, et al. Quick image-processing method of UAV without control points data in earthquake disaster area[J]. Transactions of Nonferrous Metals Society of China, 2011(增刊3): 523 − 528.
    [20] 金鼎坚, 支晓栋, 王建超, 等. 面向地质灾害调查的无人机遥感影像处理软件比较[J]. 国土资源遥感, 2016, 28(1): 183 − 189.

    JIN Dingjian, ZHI Xiaodong, WANG Jianchao, et al. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. Remote Sensing for Land & Resources, 2016, 28(1): 183 − 189. (in Chinese with English abstract)
    [21] 孙姣姣, 王琦, 郑洁, 等. 基于DOM成果的航测软件对比分析[J]. 测绘与空间地理信息, 2021, 44(8): 71 − 74.

    SUN Jiaojiao, WANG Qi, ZHENG Jie, et al. Comparative analysis of aerial survey software based on DOM results[J]. Geomatics & Spatial Information Technology, 2021, 44(8): 71 − 74. (in Chinese with English abstract)
    [22] 马旭文, 徐柳华. 基于倾斜摄影三维模型的大比例尺地形图测图软件比较与分析[J]. 测绘与空间地理信息, 2020, 43(2): 57 − 59.

    MA Xuwen, XU Liuhua. Comparison and analysis of large-scale topographic mapping software based on oblique photography 3D model[J]. Geomatics & Spatial Information Technology, 2020, 43(2): 57 − 59. (in Chinese with English abstract)
    [23] KAIMARIS D, PATIAS P, SIFNAIOU M. . UAV and the comparison of image processing software[J]. International Journal of Intelligent Unmanned Systems, 2017, 5(1): 18 − 27.
    [24] 金鼎坚, 支晓栋, 王建超, 等. 面向地质灾害调查的无人机遥感影像处理软件比较[J]. 国土资源遥感, 2016, 28(1): 183 − 189.

    JIN Dingjian, ZHI Xiaodong, WANG Jianchao, et al. Comparison of UAV remote sensing image processing software for geological disasters monitoring[J]. Remote Sensing for Land & Resources, 2016, 28(1): 183 − 189. (in Chinese with English abstract)
    [25] 王浩舟, 常雅荃, 李川, 等. 无人机影像处理软件Pix4Dmapper与 Photoscan在资源普查中的成像性能分析[J]. 甘肃科技, 2017, 33(22): 46 − 51.

    WANG Haozhou, CHANG Yaquan, LI Chuan, et al. Imaging performance analysis of UAV image processing software Pix4Dmapper and Photoscan in resource survey[J]. Gansu Science and Technology, 2017, 33(22): 46 − 51. (in Chinese)
    [26] 赵明. Agisoft PhotoScan Professional软件在无人机航空摄影数据处理中的应用[J]. 水电站设计, 2017, 33(2): 44 − 46.

    ZHAO Ming. Application of agisoft PhotoScan professional software in UAV aerial photography data processing[J]. Design of Hydroelectric Power Station, 2017, 33(2): 44 − 46. (in Chinese)
    [27] 王文敏, 王晓东. 基于ContextCapture Center平台的城市级实景三维建模技术研究[J]. 测绘通报, 2019(增刊1): 126 − 128.

    WANG Wenmin, WANG Xiaodong. Study of city real 3D modeling technology based on ContextCapture Center[J]. Bulletin of Surveying and Mapping, 2019(Sup 1): 126 − 128. (in Chinese with English abstract)
    [28] TANG Huiming, LI Changdong, HU Xinli, et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12(3): 511 − 521.
    [29] 唐辉明, 李长冬, 胡伟, 等. 重大滑坡启滑的物理机制是什么?[J]. 地球科学, 2022, 47(10): 3902 − 3903.

    TANG Huiming, LI Changdong, HU Wei, et al. What is the physical mechanism of major landslides? [J]. Earth Science, 2022, 47(10): 3902 − 3903. (in Chinese)
    [30] 管建军, 王俊豪, 王双亭, 等. 无人机倾斜摄影在黄土地区泥石流灾害调查与评价中的应用[J]. 中国地质灾害与防治学报, 2017, 28(4): 137 − 145.

    GUAN Jianjun, WANG Junhao, WANG Shuangting, et al. Application of UAV oblique photography in investigation and evaluation of debris flow disasters in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(4): 137 − 145. (in Chinese with English abstract)
    [31] DOU Jie, YUNUS A P, BUI D T, et al. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan[J]. Landslides, 2020, 17(3): 641 − 658.
    [32] 贾伟洁, 王治华. 基于高分辨率遥感影像的滑坡活动特征及稳定性分析——以东苗家滑坡为例[J]. 国土资源遥感, 2019, 31(4): 174 − 181.

    JIA Weijie, WANG Zhihua. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image: a case study of Dongmiaojia landslide[J]. Remote Sensing for Land & Resources, 2019, 31(4): 174 − 181. (in Chinese with English abstract)
    [33] 刘路路, 宋亮, 焦玉勇, 等. 库水位波动条件下黄土坡临江1#崩滑堆积体稳定性研究[J]. 岩土力学, 2017, 38(增刊1): 359 − 366.

    LIU Lulu, SONG Liang, JIAO Yuyong, et al. Study of stability of Huangtupo riverside slumping mass #1 under reservoir water level fluctuations[J]. Rock and Soil Mechanics, 2017, 38(Sup 1): 359 − 366. (in Chinese with English abstract)
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  662
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 录用日期:  2023-07-19
  • 修回日期:  2023-06-14
  • 网络出版日期:  2023-07-24

目录

    /

    返回文章
    返回