ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测

高子雁 李瑞冬 石鹏卿 周小龙 张娟

高子雁,李瑞冬,石鹏卿,等. 基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测[J]. 中国地质灾害与防治学报,2023,34(6): 29-35 doi: 10.16031/j.cnki.issn.1003-8035.202303062
引用本文: 高子雁,李瑞冬,石鹏卿,等. 基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测[J]. 中国地质灾害与防治学报,2023,34(6): 29-35 doi: 10.16031/j.cnki.issn.1003-8035.202303062
GAO Ziyan,LI Ruidong,SHI Pengqing,et al. Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 29-35 doi: 10.16031/j.cnki.issn.1003-8035.202303062
Citation: GAO Ziyan,LI Ruidong,SHI Pengqing,et al. Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 29-35 doi: 10.16031/j.cnki.issn.1003-8035.202303062

基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测

doi: 10.16031/j.cnki.issn.1003-8035.202303062
基金项目: 甘肃省自然资源厅科技创新项目(202257);甘肃省科技重大专项(19ZD2FA002)
详细信息
    作者简介:

    高子雁(1999-),女,甘肃兰州人,本科,助理工程师,主要从事地质灾害早期识别工作。E-mail:1269782387@qq.com

  • 中图分类号: P642.22

Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network

  • 摘要: 立节镇北山滑坡长期处于蠕动变形状态,已多次发生过滑坡、泥石流灾害。监测滑坡的地表形变,以掌握灾害体地表形变规律,是实现地质灾害预警预报的可靠依据。文中引入一种机器学习的模型进行相关数据预测,通过立节北山监测点位移数据,运用长短期记忆网络(LSTM)对立节北山滑坡变形进行预测,并且将预测结果与实际数据进行比对和分析。文章预测结果评价指标选用均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)以及可解释方差,其中决定系数(R2)和可解释方差均达到0.99,预测值和真实值的拟合均方根误差(RMSE)和平均绝对误差(MAE)也表现较低,说明本文采用的长短期记忆网络(LSTM)在立节北山滑坡变形的预测中达到了良好的预测性能。
  • 图  1  立节北山滑坡GNSS分布图

    Figure  1.  The North Mountain of Lijie landslide GNSS distribution map

    图  2  LSTM模型结构

    Figure  2.  LSTM model structure

    图  3  GNSS1累计位移与雨量关系

    Figure  3.  GNSS1 relationship between cumulative displacement and rainfall

    图  4  不同隐藏神经元数量的RMSE变化

    Figure  4.  RMSE variation with different numbers of hidden neurons

    图  5  LSTM模型训练中的损失函数数值变化

    Figure  5.  Numerical changes in loss function during LSTM model training

    图  6  GNSS1位移预测结果

    Figure  6.  GNSS1 displacement prediction results

    图  7  GNSS8位移预测结果

    Figure  7.  GNSS8 displacement prediction results

    图  8  GNSS1水平位移未来48 d预测结果

    Figure  8.  Forecasted results for horizontal displacement of GNSS1 for the next 48 days

    图  9  治理工程实施GNSS三维分布图

    Figure  9.  The GNSS three-dimensional distribution map of the governance project implementation

    表  1  GNSS1垂直位移精度评价指标

    Table  1.   Evaluation metrics for vertical displacement precision of GNSS1

    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 12.88 6.56 0.99 0.99
    下载: 导出CSV

    表  2  GNSS8垂直位移精度评价指标

    Table  2.   Evaluation metrics for vertical displacement precision of GNSS8

    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 6.63 5.66 0.99 0.99
    下载: 导出CSV

    表  3  GNSS8水平位移精度评价指标

    Table  3.   Evaluation metrics for horizontal displacement precision of GNSS8

    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 4.00 3.79 0.99 0.99
    下载: 导出CSV
  • [1] 张勤,黄观文,杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报,2017,46(10):1300 − 1307. [ZHANG Qin,HUANG Guanwen,YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1300 − 1307.(in Chinese with English abstract)

    ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 4610): 13001307.(in Chinese with English abstract)
    [2] FROUDE M J,PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. doi: 10.5194/nhess-18-2161-2018
    [3] 宋昭富, 张勇, 佘涛, 等. 基于易发性分区的区域滑坡降雨预警阈值确定—以云南龙陵县为例[J]. 中国地质灾害与防治学报,2023,34(4):22 − 29. [SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):22 − 29. (in Chinese with English abstract)

    SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 344): 2229. (in Chinese with English abstract)
    [4] 唐亚明,张茂省,薛强,等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评,2012,58(3):533 − 541. [TANG Yaming,ZHANG Maosheng,XUE Qiang,et al. Landslide monitoring and early-warning:An overview[J]. Geological Review,2012,58(3):533 − 541. (in Chinese with English abstract)

    TANG Yaming, ZHANG Maosheng, XUE Qiang, et al. Landslide monitoring and early-warning: An overview[J]. Geological Review, 2012, 583): 533541. (in Chinese with English abstract)
    [5] GLADE T,NADIM F. Early warning systems for natural hazards and risks[J]. Natural Hazards,2014,70(3):1669 − 1671. doi: 10.1007/s11069-013-1000-8
    [6] 余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799 − 1804. [YU Kai,JIA Lei,CHEN Yuqiang,et al. Deep learning:Yesterday,today,and tomorrow[J]. Journal of Computer Research and Development,2013,50(9):1799 − 1804. (in Chinese with English abstract)

    YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: Yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 509): 17991804. (in Chinese with English abstract)
    [7] 杜续,冯景瑜,吕少卿,等. 基于随机森林回归分析的PM2.5浓度预测模型[J]. 电信科学,2017,33(7):66 − 75. [DU Xu,FENG Jingyu,LYU Shaoqing,et al. PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science,2017,33(7):66 − 75(in Chinese with English abstract)

    DU Xu, FENG Jingyu, LYU Shaoqing, et al. PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science, 2017, 337): 6675(in Chinese with English abstract)
    [8] 张品一,薛京京. 多分形互联网金融市场的风险预警模型研究[J]. 数量经济技术经济研究,2022,39(8):162 − 180. [ZHANG Pinyi,XUE Jingjing. Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics,2022,39(8):162 − 180. (in Chinese with English abstract)

    ZHANG Pinyi, XUE Jingjing. Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics, 2022, 398): 162180. (in Chinese with English abstract)
    [9] 程宇也. 基于人工神经网络的短期电力负荷预测研究[D]. 杭州:浙江大学, 2017. [CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou:Zhejiang University, 2017. (in Chinese with English abstract)

    CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
    [10] 李小妍. 基于图神经网络的交通流量预测[D]. 成都:电子科技大学, 2020. [LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)

    LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
    [11] 刘新,赵宁,郭金运,等. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报,2020,22(8):1617 − 1629. [LIU Xin,ZHAO Ning,GUO Jinyun,et al. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science,2020,22(8):1617 − 1629. (in Chinese with English abstract)

    LIU Xin, ZHAO Ning, GUO Jinyun, et al. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science, 2020, 228): 16171629. (in Chinese with English abstract)
    [12] 冯非凡,武雪玲,牛瑞卿,等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版),2019,44(5):784 − 790. [FENG Feifan,WU Xueling,NIU Ruiqing,et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019,44(5):784 − 790. (in Chinese with English abstract)

    FENG Feifan, WU Xueling, NIU Ruiqing, et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 445): 784790. (in Chinese with English abstract)
    [13] 张宇,张鹏远,颜永红. 基于注意力LSTM和多任务学习的远场语音识别[J]. 清华大学学报(自然科学版),2018,58(3):249 − 253. [ZHANG Yu,ZHANG Pengyuan,YAN Yonghong. Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology),2018,58(3):249 − 253. (in Chinese with English abstract)

    ZHANG Yu, ZHANG Pengyuan, YAN Yonghong. Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology), 2018, 583): 249253. (in Chinese with English abstract)
    [14] 刘宇. 深度学习在图像处理中的应用——基于深度学习的视频帧预测算法研究[D]. 成都:电子科技大学, 2020. [LIU Yu. Application of deep learning in image processing:Research on video frame prediction algorithm based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)

    LIU Yu. Application of deep learning in image processing: Research on video frame prediction algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
    [15] 彭燕,刘宇红,张荣芬. 基于LSTM的股票价格预测建模与分析[J]. 计算机工程与应用,2019,55(11):209 − 212. [PENG Yan,LIU Yuhong,ZHANG Rongfen. Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications,2019,55(11):209 − 212. (in Chinese with English abstract)

    PENG Yan, LIU Yuhong, ZHANG Rongfen. Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications, 2019, 5511): 209212. (in Chinese with English abstract)
    [16] 杨青,王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究,2019,36(3):65 − 77. [YANG Qing,WANG Chenwei. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019,36(3):65 − 77. (in Chinese with English abstract) doi: 10.19343/j.cnki.11-1302/c.2019.03.006

    YANG Qing, WANG Chenwei. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research, 2019, 363): 6577. (in Chinese with English abstract) doi: 10.19343/j.cnki.11-1302/c.2019.03.006
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-09-27
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回