ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

秦巴山区典型碎石土抗剪强度变化规律及其在堆积层滑坡机理分析中的应用

张昊天, 王新刚, 罗力, 王友林, 郭倩怡, 薛晨

张昊天,王新刚,罗力,等. 秦巴山区典型碎石土抗剪强度变化规律及其在堆积层滑坡机理分析中的应用[J]. 中国地质灾害与防治学报,2024,35(5): 50-58. DOI: 10.16031/j.cnki.issn.1003-8035.202306038
引用本文: 张昊天,王新刚,罗力,等. 秦巴山区典型碎石土抗剪强度变化规律及其在堆积层滑坡机理分析中的应用[J]. 中国地质灾害与防治学报,2024,35(5): 50-58. DOI: 10.16031/j.cnki.issn.1003-8035.202306038
ZHANG Haotian,WANG Xingang,LUO Li,et al. Changing law of shear strength of typical gravel soil in Qinba Mountain area and its application in the analysis of landslide mechanism in accumulation layers[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 50-58. DOI: 10.16031/j.cnki.issn.1003-8035.202306038
Citation: ZHANG Haotian,WANG Xingang,LUO Li,et al. Changing law of shear strength of typical gravel soil in Qinba Mountain area and its application in the analysis of landslide mechanism in accumulation layers[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 50-58. DOI: 10.16031/j.cnki.issn.1003-8035.202306038

秦巴山区典型碎石土抗剪强度变化规律及其在堆积层滑坡机理分析中的应用

基金项目: 国家重点研发计划项目(2023YFC3008401);陕西省自然科学基础研究计划重点项目(2024JC-ZDXM-19)
详细信息
    作者简介:

    张昊天(1999—),男,硕士研究生,主要从事堆积层滑坡致滑机理研究。E-mail:1187910566@qq.com

    通讯作者:

    王新刚(1984—),男,教授,博士生导师,主要从事地质灾害机理与防控研究。E-mail:xgwang@nwu.edu.cn

  • 中图分类号: P642.22

Changing law of shear strength of typical gravel soil in Qinba Mountain area and its application in the analysis of landslide mechanism in accumulation layers

  • 摘要:

    秦巴山区堆积层滑坡具有数量多、分布广、密度大和频次高的特点,常造成十分严重的灾害。文章以秦巴山区小岭镇岭丰村三组矿洞滑坡碎石土为研究对象,通过室内大型直剪试验对研究区碎石土进行了深入研究,探讨了不同含水率、不同干密度和不同法向应力下碎石土抗剪强度的变化规律,并基于室内试验成果采用Midas GTS NT有限元数值模拟软件对该滑坡发生前的边坡进行计算分析,模拟分析了该边坡在开挖后及开挖与降雨耦合两种工况下应力、位移和稳定性的变化情况,最后以此为依据总结了典型开挖诱发型堆积层滑坡的发生机理。通过数值模拟计算发现:人类工程活动即开挖坡脚和该地区出现的强降雨是导致滑坡的主要诱发因素;秦巴山区典型开挖诱发型滑坡的变形模式可被归纳为:牵引-蠕滑式。研究成果可为秦巴山区堆积层滑坡的防治提供一定参考。

    Abstract:

    The mound landslides in the Qinba Mountain area are characterized by their large number, wide distribution, high density, and high frequency occurence, with excavation-induced landslides being particularly severe. This study focuses on the gravel soils from the mine hole landslide in the third group of Lingfeng Village, Xiaoling Town, Qinba Mountain area. Through large-scale direct shear tests conducted in the laboratory, an in-depth investigation of the gravelly soils in the study area was carried out. The variation rules of shear strength under different moisture contents, dry densities, and normal stresses were explored. Based on the results of these indoor tests, the Midas GTS NT finite element numerical simulation software was used to calculate and analyze the slope conditions before the occurrence of the landslide. Simulations were conducted to analyze the changes in stress, displacement, and stability of the slope after excavation and under two working conditions: post-excavation and post-excavation coupled with rainfall. Finally, the mechanism of typical excavation-induced landslides in stockpiles is summarized based on these findings. It was found by numerical simulation: human engineering activities, i.e., excavation of the toe of slopes and heavy rainfall occurring in the area, are the main triggering factors for landslides: the deformation pattern of typical excavation-induced landslides in the Qinba Mountains can be summarised as: traction-creep-slip type.The research results can provide valuable reference for the prevention and control of excavation-induced landslides in accumulation layers in the Qinba Mountain area.

  • 泥石流是中国常见山地灾害之一,在短时间内将大量松散物质沿流域冲刷而下,严重破坏山区城镇基础设施,威胁人民生命财产安全[12]。我国西南地区由于人地矛盾突出,许多城镇和基础设施被迫建立在峡谷阶地、泥石流沟口或周边区域,长期面临泥石流灾害的潜在威胁[3]。不断深入研究泥石流灾害是我国山地灾害防治工作的重要组成部分,防灾减灾抗灾救灾是人类生存发展的永恒课题。

    厘清泥石流性质及规模是评价与防治泥石流灾害的关键依据[47]。目前泥石流容重及规模的研究方法颇多。泥石流容重的确定方法分为宏观分析、微观分析[7]以及现场试验法。现场试验法是取泥石流原状堆积物加水配置,这种方法仅适用于已经发生的泥石流容重测试,且要有相应的泥石流见证者反复确认,该方法得到的容重精确度较低,误差较大。计算方法主要分为宏观经验分析法、微观经验分析法,宏观经验分析法包括建立基于沟床比降、流域面积等与容重之间的关系[811]。李炳志等[12]分析了泥石流容重随流量、沟床纵坡的变化情况;黄海等[1314]建立基于水源条件的容重预测方法,后又厘定了最大容重、峰值容重和平均容重对其他泥石流运动参数的影响;韩征等[15]通过对四川山区泥石流沟道调查,建立了流域形态完整系数与容重的统计关系,形成基于流域形态完整系数泥石流容重的指数式计算公式;谢娜等[16]分析甘肃陇南一带典型泥石流特征,认为泥石流容重与其流域形态指数成正相关。微观经验分析法通过微观堆积物粒径百分比,提出基于黏土颗粒比例来估算浆体容重值的计算公式[1718]。总结以上这些常用方法发现,宏观经验分析法仅依靠单因素公式建立关系,其结果具有一定的局限性和单一性;微观经验分析法开展条件较复杂,且需要大量现场试验,成本较高。

    规模研究上,泥石流的单次最大冲出量即为泥石流固体物质冲出量[19],可依此数据判断泥石流最大活动规模[20]。计算泥石流规模的方法主要有数值模拟、理论分析和试验结果观测。数值模拟多用于不同设定条件下泥石流规模大小与范围研究,从宏观角度分析沟道特征、降水和物源对规模的影响。徐粒等[21]基于HEC-HMS和FLD-2D模型模拟不同降雨情况下泥石流堆积面积与泥沙冲出量关系;唐泽等[22]运用R.Avaflow模型对红椿沟“8•14”泥石流灾害事件进行模拟并得到与实际结果十分接近的泥石流冲出规模;Zhang等[23]利用Herschel-Bulkley-Papanastasiou模型导入Open FOAM成功应用于爱华流域泥石流规模预测;罗超鹏等[24]运用FLOW-3D对泥石流运动规模进行模拟并分区。数值模拟方法虽能直观的展示结果但通常为宏观上的单一冲出量模拟,设定的边界条件较多,不同软件的模拟结果可能不同,对后续误差分析影响较大。理论分析为结合前人研究成果、以历史泥石流灾害事件为参考分析泥石流规模异同。李俊等[25]运用经验公式估算出西藏水电区滑坡泥石流规模,分析万年尺度下泥石流溃坝与渡河危险性;Zhong等[26]分析桐梓林沟泥石流认为泥石流规模与区域干旱时间有关;Tian等[27]等研究EKZG泥石流事件认为高频小雨与地质构造差异是造成大规模泥石流灾害的主要原因;杨华铨等[28]分析凉山州泥石流灾害认为坡岸滑坡与堵溃效应是导致灾害规模扩大的原因。理论分析方法多用于泥石流形成机制研究,适用于从多次灾害事件中推测出泥石流规模的变化。试验、观测结果方法通常作为泥石流规模研究的验证手段。袁路等[29]基于试验提出振幅高低与泥石流容重呈正相关趋势,结果可用于估算泥石流峰值流量及规模;詹美强等[30]设计水槽试验分析泥石流坡岸物源失稳过程与土体破坏过程差异;Liu等[31]结合现场试验分析矮子河谷松散物源在不同降雨工况下泥石流的规模差异。在误差精度满足要求的情况下,试验手段能重现泥石流运动过程与灾后规模。综上所述,对于泥石流规模研究多为根据经验总结的物理模型或理论分析,有的需结合大量历史数据资料,或是单一的冲出模拟,其计算结果差异很大,并不适用于所有区域。

    物源是影响泥石流暴发的重要因素[3233],本文基于对九绵高速“8•16”泥石流灾害事件的实地调查、无人机拍摄以及遥感解译等工作,通过物源量变化来反映泥石流性质及其规模的变化趋势,揭示物源量与泥石流流体性质及规模的关系,能够在对泥石流灾害流体性质与规模的现场勘查中提供判断方法,为该地区泥石流灾害治理提供参考,也为其他地区泥石流性质及规模的研究提供一种新思路。

    九绵高速LJ9段位于四川省绵阳市平武县白马乡部落,区域泥石流灾害发育趋势明显。区域内地形起伏大,中部低两周高。中部有涪江支流夺补河(又名火溪河)经过,周边属山地地貌,地形复杂。麻石扎3号沟、阿祖沟、夺补河5号沟、杂排沟依次沿夺补河两侧分布,黄土梁隧道左沟、右沟位于G247国道平绵高速段黄土梁隧道连接处,研究区流域分布如图1所示。区域内地貌属于构造侵蚀中高山地貌,两侧坡面陡峭,沟谷断面多呈“V”型,两岸坡度均大于60°,部分沟道支、冲沟发育,具有形成泥石流的条件。

    图  1  研究区地理位置
    Figure  1.  Geographical location of the study area

    2020年8月16—17日,四川省绵阳市平武县九绵高速LJ9在建路段发生大型泥石流,造成多人死亡,直接经济损失超过1500万元。16日下午6点,九绵高速建设工程项目驻地后方阿祖沟暴发泥石流,灾害造成2人死亡,沟口多座工程设施被破坏。8月17日下午1时,该沟再次发生泥石流导致沟口下方的夺补河堵塞,正在修建的高架桥路段受损严重。同一天内,邻近的麻石扎3号沟、夺补河5号沟、杂排沟、黄土梁左沟、黄土梁右沟相继暴发中、大规模泥石流。

    研究区位于上古生界中泥盆统三河口组(D2S1-2)地层,主要分布于斜坡地带及沟谷地带。区域地层多为碳质板岩,浅表层岩体强风化,裂隙发育,岩层产状320°∠64°。研究区周边地区断裂、褶皱较发育,受活动断裂带的影响较大,地质构造较复杂(图2)。

    图  2  研究区地质图
    Figure  2.  Geological map of the study area

    平武县地处亚热带季风气候区,多年平均气温14.7 °C,气温值范围为13.9~15.1 °C。最高温37 °C,最低温−7 °C。多年平均日照时间1376 h,多年平均无霜期为252 d。全年降水时间分配不均、空间分布不均,多年平均降水量达到806.0 mm,区内6—9月降水量占全年降水量的80%。 2020年平武县区域暴雨集中在7—8月(图3)。根据平武县气象局提供资料,2020年8月10日20时—8月17日14时,平武县白马藏族乡累计降雨量为250.2 mm,同比去年8月份增加219.95%。结合历史降雨资料对比,此次强降雨强度超过50 a一遇。这是典型的历时短、强度高、集中性强降雨,易导致沟谷型泥石流灾害发生。

    图  3  2020年平武县月平均气温、降雨量
    Figure  3.  Monthly average temperature and rainfall in Pingwu County, 2020

    本研究数据包括:2020年绵阳市平武县白马藏族乡亚者造祖村至黄土梁隧道口段泥石流灾后遥感影像;松潘幅1∶100 000地质图;中国气象数据网(http://data.cma.cn/)2020年绵阳市平武县气象观测站月平均降雨量、气温数据;泥石流岩土工程调控措施相关数据来自于中国科学院、水利部成都山地灾害与环境研究所2020年5月编制的《九绵高速LJ9合同段地质灾害危险性评估报告》;研究区6条泥石流沟道基础数据与泥石流颗分土样等为2022年5月作者实地测量采样所得。

    物源量的确定是开展泥石流运动特征和规模的重要前提,目前物源量计算方法已有线性、非线性等多种经验公式[3438],流域物源类型不同,物源储量的计算方法也不相同。通过多次计算结果与实测数据对比,最终确定研究区坡面侵蚀型物源计算模型参照胡旭东等[39]提到的幂函数经验公式,该方法先确定区域的侵蚀坡面面积-体积的经验指数来得到物源体积;凹槽土体物源计算方法则选用乔建平等[40]提出沟谷下切及两侧失稳的动储量计算方法,相关计算公式见表1、研究区具体物源数据见表2

    表  1  泥石流动储量计算公式
    Table  1.  Calculation formula for debris flow dynamic reserves
    物源类型 计算公式 说明
    坡面侵蚀物源 V=αAγ V为坡面侵蚀物源体积/104 m3A为坡面侵蚀物源面积/m2
    α为面积-体积修正系数;γ为面积-体积经验指数,不同地区的修正系数与经验指数一般不同
    凹槽土体物源 松散土体面积:
    Δ1cod=12cocd=12hhtanα=
    12h2tan(βθ)
    动储量体积:V01=Δ1codL1
    β为斜坡自然休止角/(°);α为物源土体与自然休止角夹角/(°);co=h为原沟床深度/m;
    V01为下切侵蚀型动储量/m3L1为沟床堆积体长度/m,具体参数位置见图4
    下载: 导出CSV 
    | 显示表格
    图  4  凹槽土体物源量计算模型
    Figure  4.  Calculation model of the source quantity of groove material sourc
    表  2  泥石流运动参数式
    Table  2.  Calculation formulas table for debris flow motion parameters
    序号 参数 公式 说明
    1 泥石流流速 Vc=(Mc/a)R2/3Ic1/2
    a=(1+φcγs)12
    φc=γcγwγsγc
    Vc为流速/(m·s−1);Mc为泥石流沟床粗糙系数,沟槽情况越复杂取值越大,取值为4.5~7.9(表3);R为泥石流水力半径/m ;Ic为泥石流水力坡度;γs为固体颗粒的容重,取2.65~2.7 g/cm3γc为泥石流容重/(g·cm−3);γw为水的容重,取1.0 g/cm3
    2 峰值流量 QC=(1+φ)QPDC
    QP=0.278ψsτnF
    φ=(γcγw)/(γsγc)
    QC为泥石流峰值流量/(m3·s−1);QP为频率为P的暴雨洪水设计流量/(m3·s−1);φ为泥石流泥沙修正系数,取值在0.8~1.2,见表3DC为堵塞系数,根据实际调查情况,取值见表3ψ为洪峰径流系数;τ为流域汇流时间;n为暴雨指数;s为暴雨雨力;τns依据《四川省中小流域暴雨洪水计算手册》取值,F为流域面积
    3 泥石流一次
    冲出总量
    Wc=0.264TQc T为泥石流历时/s;QC为泥石流峰值流量/(m3·s−1
    4 泥石流冲出
    固体物质总量
    Ws=(γcγw)Wc/(γsγw) Wc为泥石流一次冲出总量/(m3·s−1
    下载: 导出CSV 
    | 显示表格

    由于现场勘察距灾害发生已有一段年限,容重实测难度大,故对泥石流容重的确定采用泥石流沟易发程度数量化评分 [40]和基于黏粒含量的泥石流容重计算法[12]综合确定,计算方法见式(1):

    γc=1.32×103x75.13×102x6+8.91×102x555x4+34.6x367x2+12.5x+1.55 (1)

    式中:γc——泥石流容重/(g·cm−3);

    x——泥石流堆积物中黏粒占粒径小于60 mm部分的含量。

    将现场泥石流原状堆积物筛分后使用马尔文激光粒度仪得到细颗粒中黏粒含量(图5),结合泥石流沟易发程度数量化评分[40]结果确定研究区泥石流容重,结果见表3

    图  5  颗粒分析粒度曲线
    Figure  5.  Particle size curve from particle analysis
    表  3  泥石流运动特征参数
    Table  3.  Characteristic parameters of debris flow
    沟名 泥石流流速
    /(m·s−1
    泥石流容重
    /(g·cm−3
    泥石流峰值流量
    /(m3·s−1
    泥石流一次冲出总量
    /(104 m3
    固体物质总量
    /(104 m3
    堵塞系数 沟床糙率
    系数
    泥沙修正
    系数
    阿祖沟 4.21 1.843 174.14 8.28 3.73 2.7 4.9 1.15
    麻石扎3号桥沟 6.54 1.647 29.47 0.99 0.34 2.2 7.3 0.83
    夺补河5号桥沟 3.79 1.717 21.67 1.80 0.54 2.4 6.2 0.97
    杂排沟 3.45 1.811 253.45 6.12 3.20 2.6 5.2 0.91
    黄土梁左沟 4.50 1.677 81.38 1.612 0.49 1.9 6.9 0.85
    黄土梁右沟 4.36 1.697 88.79 2.18 0.54 2.1 6.7 0.83
      注:表格中的沟床糙率系数(Mc),泥沙修正系数(φ)与堵塞系数(DC)均为结合研究区先前研究、地形条件与实地勘察数据等因素综合考虑后赋值
    下载: 导出CSV 
    | 显示表格

    计算得出各流域泥石流的流速、峰值流量、一次冲出总量计算公式见表4

    表  4  研究区泥石流沟基础资料统计表
    Table  4.  Statistical table of basic data of debris flow gullies in the study area
    沟名 流域面积
    /km2
    容重
    /(g·cm−3
    坡面、凹槽物源
    面积S1S2
    /(10−4 km2
    凹槽土体物源量
    /(104 m3
    物源总量
    /(×104m3)
    单位面积物源/
    (104 m3·km−2
    阿祖沟 4.54 1.843 5.80、2.19 26.29 102.89 22.62
    麻石扎3号沟 2.34 1.647 2.25、0 0 2.32 0.99
    夺补河5号沟 1.78 1.717 2.36、0 3.37 18.20 10.11
    杂排沟 5.68 1.811 3.96、2.17 28.16 97.69 17.20
    黄土梁左沟 5.14 1.677 1.01、0 0 10.18 1.98
    黄土梁右沟 5.74 1.697 3.84、0 0 38.73 6.74
    下载: 导出CSV 
    | 显示表格

    根据当地气象站降雨数据可知(图3),平武县2020年7月雨量明显增加,8月突发暴雨,前期充足的降雨与灾害当月高强度暴雨是造成此次灾害的重要因素。计算得出在100 a重现期下,泥石流容重均在1.60~1.85 g/cm3,阿祖沟与杂排沟峰值流量分别达到174.14 m3/s、253.45 m3/s。结合现场勘察和居民调访得知研究区近50年内未发生大规模泥石流事件,根据《泥石流勘查技术》[7]中对泥石流规模分类的描述,判定此次九绵高速LJ9段“8•16”泥石流整体为低频暴雨型泥石流。阿祖沟、杂排沟容重值为1.843 g/cm3、1.811 g/cm3,泥石流峰值流量超过100 m3/s,故为大型-黏性泥石流,夺补河5号沟为中型-稀性泥石流,麻石扎3号沟、黄土梁左沟、黄土梁右沟暴发小型-稀性泥石流,各沟道泥石流运动参数结果见表3

    结合区域地质图可知,6条沟道地质构造与岩性基本相同,主要为砂岩、板岩,零星有花岗岩分布。结合颗粒分析粒度曲线(图5)可知,阿祖沟与麻石扎3号沟堆积物中黏粒含量占总量的2.75%与0.81%,其余沟道的黏粒含量均在0.81% ~2.75%,且粒径小于1 mm的颗粒含量均不超过50%,黏粒含量与经验公式计算出的泥石流数量关系一致。现场对比发现沟道内块石大部分呈次棱角状,部分呈磨圆状(图6),故认为研究区6条泥石流沟携带的颗粒物源具有相似的颗粒组成。

    图  6  研究区泥石流原状物颗粒组成
    Figure  6.  Composition of original debris flow particles in the study area

    泥石流流体性质差异与沟道物源量密切相关,物源量多、分布广泛的沟道形成泥石流容重更大。结合现场无人机图片与遥感影像显示6条泥石流沟道的物源种类与规模明显不同。阿祖沟与杂排沟泥石流呈黏性,流域内松散堆积体多且分布广泛,麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟流域物源较少,主要分布在冲沟内和临近沟道的坡岸(图7)。

    图  7  研究区物源分布
    Figure  7.  Material source distribution in the study area

    研究区侵蚀方式主要为暴雨侵蚀,侵蚀强度受当地降雨量、土体结构、植被以及地震等因素影响,结合沟道物源统计(表4)认为物源量与对应流域松散堆积体类型有关,主要物源类型有坡面侵蚀物源与凹槽松散堆积物。其中,阿祖沟种类为#1、#4支沟凹槽土体失稳和#3、#4支沟的大面积滑坡堵溃(图8);杂排沟物源由流域顶端凹槽土体和冲沟两侧坡面崩滑物源组成(图7)。其余4条泥石流沟以坡面侵蚀物源为主,零星分布在流域及沟道中游位置。麻石扎3号沟、黄土梁左沟、黄土梁右沟为小规模侵蚀(图6);夺补河5号沟侵蚀区域沿沟道坡岸较大面积分布(图9),物源分布相对集中,这种状况在极端条件下更容易发生大规模的泥石流灾害。

    图  8  阿祖沟凹槽物源分布示意图
    Figure  8.  Schematic diagram of groove material source distribution map of the Azu debris flow gully
    图  9  夺补河5号沟坡面侵蚀物源
    Figure  9.  Material source of slope erosion in No. 5 debris flow gully of Duobo River

    有研究认为凹槽土体在降雨和后端地貌径流放大的作用下发生滑坡并转化成泥石流[41]。故容重更大的阿祖沟和杂排沟坡岸顶端形成多处小范围汇水区,汇水逐渐侵蚀土体,在遭遇强降水、地震后汇入沟道,极大增加泥石流物源启动量。

    根据流域松散物源总量(表4)可知,阿祖沟、杂排沟单位面积物源量达到了22.62×104 m3/km2、17.20×104 m3/km2,容重分别为1.843 g/cm3、1.811 g/cm3,暴发的泥石流均表现为黏性。结果拟合了各泥石流单位面积物源量与容重(P=1%)之间的关系(图10),两者基本符合正相关关系,关系式为y=1.64725+0.00915x,拟合优度达到0.91以上。由于判定容重达到1.8 g/cm3时,阿祖沟、杂排沟泥石流流体性质呈黏性 [7],对应单位面积物源量约为1.65×105 m3/km2,麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟容重均小于1.75 g/cm3,对应单位面积物源量小于1.13×105 m3/km2。故认为研究区泥石流流体性质的差异与物源量紧密相关,当流域单位面积物源量大于1.65×105 m3/km2时,泥石流流体性质为黏性;当单位面积物源量小于1.13×105 m3/km2时,泥石流流体性质为稀性。

    图  10  泥石流沟单位面积物源量与容重的关系
    Figure  10.  The Relationship between material source quantity and bulk density per unit area of debris flow gully

    泥石流规模大小的判定与流域内松散固体物质量紧密相关。根据泥石流运动参数公式(表2),6条沟的泥石流暴发规模由其一次泥石流总量确定,而一次泥石流总量与物源量有关。研究区特殊的气温条件与短时强降雨,再加上长期人类活动影响,使得流域内累积了大量的凹槽松散物源与坡面侵蚀物源。其中,规模更大的阿祖沟、杂排沟暴发规模为大型,流域松散物源量分别达到102.89×104 m3、97.69×104 m3表4);麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟泥石流规模为中型,松散物源量均未超过40×104 m3,这也为后续形成不同量级的破坏力奠定了基础。因此,考虑流域内松散物源作为确定泥石流爆发规模的关键因素是合理的。

    拟合各沟道单位面积物源量与一次泥石流总量(P=1%)之间的关系(图11),得到关系式为y=0.34501+0.34741x。由于一次泥石流总量>5×104 m3且≤50×104 m3时,泥石流规模定义为大型[7],此时可得单位面积物源量范围约为1.4×105~1.4×106 m3/km2;当一次泥石流总量>1×104 m3且≤5×104 m3时或峰值流量在50~200 m3/s时,定义为中型[7],单位面积物源量范围约为2×104~1.4×105 m3/km2;当一次泥石流总量<1×104 m3或峰值流量<500 m3/s时,定义为小型[7],单位面积物源量小于2×104 m3/km2

    图  11  单位面积物源量与一次泥石流总量的关系
    Figure  11.  The relationship between the volume of material source per unit area and the total volume of the debris flow

    结果表明,在无降水、地震差异且相似地质条件情况下,泥石流物源量与其规模之间呈线性相关,单位面积内流域物源量在1.4×105~1.4×106 m3/km2,泥石流暴发规模为大型;单位面积内流域物源量在2×104~1.4×10 5m3/km2,泥石流暴发规模呈中型;单位面积内流域物源量小于2×104 m3/km2,则为小型泥石流。

    泥石流灾害的研究最终都是为了避免灾害对人类生存活动的影响。泥石流堆积扇冲出距离、堆积宽度等堆积特征是泥石流危害程度的主要特征[42]。本研究通过现场测量和村民调访,收集了6条沟泥石流堆积扇的覆盖面积、坡度、厚度等数据(表5)。黄土梁左沟、黄土梁右沟灾害暴发时泥石流沿沟口排导槽流动,故这两条沟的泥石流堆积扇位于沟口下方约3 km处,见图12(e),其余泥石流沟的堆积扇均在夺补河沿岸形成(图12)。

    表  5  泥石流堆积扇数据
    Table  5.  Data of debris flow fans
    沟名 堆积坡度
    /(°)
    堆积厚度
    /m
    面积
    /(104 m2
    堆积体积
    /(104 m3
    阿祖沟 10.0 2.5 6.31 3.98
    麻石扎3号沟 10.1 1.2 0.51 0.34
    夺补河5号沟 8.0 1.2 1.45 1.07
    杂排沟 7.0 2.4 4.12 2.94
    黄土梁左沟、右沟 7.6 1.5 1.68 1.12
    下载: 导出CSV 
    | 显示表格
    图  12  泥石流堆积扇示意图
    Figure  12.  Schematic diagram of debris flow fans

    据调查,本次“8•16”泥石流事故对正在建设中的九绵高速LJ9段工程危害严重,灾害分别对区域造成不同程度的破坏。通过拟合各沟道物源总量与堆积扇体积之间的关系(图13)发现,规模最大的阿祖沟和杂排沟泥石流破坏力明显超过其余泥石流(图1415),分别导致2人、1人死亡,直接经济损失达到700万元、500万元。通过3.1节可知,单位面积物源量超过1.7×105 m3/km2时,阿祖沟与杂排沟呈黏性且物源总量均超过80×104 m3。故认为研究区泥石流物质致灾能力受物源量控制,当物源总量超过80×104 m3的沟道往往容易形成黏性泥石流,沟口形成的堆积扇更大,破坏力更强;物源总量小于80×104 m3的沟道易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。

    图  13  物源总量与泥石流堆积扇体积的关系
    Figure  13.  The relationship between the total volume of material source and the volume of debris flow fan
    图  14  阿祖沟泥石流沟口航拍图(受灾后)
    Figure  14.  Aerial photography of the Azu debris flow gully exit (post- disaster)
    图  15  杂排沟泥石流沟口堆积扇概况图
    Figure  15.  Overview of the debris flow fan at the Zapai debris flow gully exit

    (1)“8•16”九绵高速LJ9段泥石流为低频暴雨型泥石流。阿祖沟、杂排沟暴发黏性大规模泥石流,夺补河5号沟为中型-稀性泥石流,麻石扎3号沟、黄土梁左沟、黄土梁右沟暴发小型-稀性泥石流,泥石流容重值在1.647~1.843 g/cm3之间,流速为3.45~6.54 m/s,流量为29.47~253.45 m3/s,一次过流总量为0.99×104~8.28×104 m3

    (2)泥石流性质差异与沟道物源量紧密相关。当单位面积物源量大于1.65×105 m3/km2时,泥石流流体性质为黏性;当单位面积物源量小于1.13×105 m3/km2时,泥石流流体性质为稀性。

    (3)在无降水、地震差异且相似地质条件下,泥石流物源量与规模两者呈线性相关,泥石流一次过流总量越大,暴发泥石流规模越大。单位面积物源量在2×104~1.4×105 m3/km2之间,泥石流暴发规模为大型;单位面积内流域物源量在2×104~1.4×105 m3/km2,暴发规模呈中型;单位面积内流域物源量小于2×104 m3/km2,则为小型泥石流。

    (4)泥石流物质致灾能力受物源量控制,物源总量超过80×104 m3的沟道更易形成黏性泥石流,沟口形成堆积扇更大,破坏力更强;物源总量小于80×104 m3的沟道更易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。

  • 图  1   岭丰村三组矿洞滑坡平面图

    Figure  1.   Plan view of the mine cave-in landslide at Lingfeng Village group 3

    图  2   岭丰村三组矿洞滑坡(镜向:274°)

    Figure  2.   Mine cave-in landslide in Lingfeng Village group 3 (Lens direction: 274°)

    图  3   矿洞滑坡碎石土级配曲线

    Figure  3.   Grading curves of gravelly soils in mine cave landslides

    图  4   试验仪器及试验材料

    注:a为TT-ADS型全自动单联直剪仪;b为滑坡样品土;c为试验盒。

    Figure  4.   Test apparatus and materials

    图  5   相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力与剪切位移变化曲线

    Figure  5.   Variation curves of shear stress and shear displacement under the same dry density (ρd=1.4 g/cm3) and different moisture content

    图  6   相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力峰值变化规律

    Figure  6.   Variation of peak shear stress under the same dry density (ρd=1.4 g/cm3) and different moisture content

    图  7   相同干密度下(ρd=1.4 g/cm3)抗剪强度指标与含水率关系曲线

    Figure  7.   Shear strength index versus moisture content at the same dry density (ρd=1.4 g/cm3)

    图  8   相同含水率(ω=10.6%)、不同干密度下剪切应力与剪切位移的变化规律

    Figure  8.   Variation of shear stress and shear displacement under the same moisture content (ω=10.6%) and different dry densities

    图  9   相同含水率(ω=10.6%)、不同干密度下剪切应力峰值变化规律

    Figure  9.   Variation of peak shear stress under the same moisture content (ω=10.6%) and different dry densities

    图  10   相同含水率(ω=10.6%)下抗剪强度指标与干密度关系曲线

    Figure  10.   Shear strength index versus dry density at the same moisture content (ω=10.6%)

    图  11   Midas GTS NT有限元模型

    Figure  11.   Midas GTS NT finite element model

    图  12   开挖后滑坡位移云图

    Figure  12.   Cloud map of landslide displacement after excavation

    图  13   开挖前后滑坡最大剪应力云图

    Figure  13.   Cloud map of maximum shear stress of landslide before and after excavation

    图  14   开挖前后塑性区分布图

    Figure  14.   Distribution of plastic zones before and after excavation

    图  15   开挖与降雨耦合作用后滑坡位移云图

    Figure  15.   Cloud map of landslide displacement after excavation and rainfall coupling action

    图  16   开挖与降雨耦合作用后滑坡塑性分区图

    Figure  16.   Plastic zoning of landslide after excavation and rainfall coupling

    表  1   本次试验方案

    Table  1   Large-scale direct shear test program

    试样编号 含水率/% 干密度/(g·cm−3
    S01 5.0 1.5
    S02 10.6 1.5
    S03 15.0 1.5
    S04 19.4 1.5
    S05 5.0 1.4
    S06 10.6 1.4
    S07 15.0 1.4
    S08 19.4 1.4
    S09 5.0 1.4
    S10 10.6 1.3
    S11 15.0 1.3
    S12 19.4 1.3
    下载: 导出CSV

    表  2   数值模拟参数

    Table  2   Numerical model parameters

    类型 重度
    /(kN·m−3
    泊松比 c/kPa φ/(°) E/MPa
    碎石土层 21.2 0.32 25.2 31.1 100
    滑带土(天然工况) 19.2 0.33 25.0 30.5 90
    滑带土(饱和工况) 19.7 0.40 20.9 19.6 70
    强风化层 23.3 0.30 50.0 35.0 200
    基岩层 24.5 0.28 428.0 38.0 1000
    下载: 导出CSV
  • [1] 赵力行,范文,柴小庆,等. 秦巴山区地质灾害发育规律研究——以镇巴县幅为例[J]. 地质与资源,2020,29(2):187 − 195. [ZHAO Lixing,FAN Wen,CHAI Xiaoqing,et al. Study on the development pattern of geological hazards in the Qinba Mountain area:Take Zhenba County magnitude as an example[J]. Geology and Resources,2020,29(2):187 − 195. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1947.2020.02.011

    ZHAO Lixing, FAN Wen, CHAI Xiaoqing, et al. Study on the development pattern of geological hazards in the Qinba Mountain area: Take Zhenba County magnitude as an example[J]. Geology and Resources, 2020, 29(2): 187 − 195. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1947.2020.02.011

    [2] 周静静,张晓敏,赵法锁,等. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报,2019,25(4):544 − 553. [ZHOU Jingjing,ZHANG Xiaomin,ZHAO Fasuo,et al. Study on the evaluation of geological hazard risk in Qinba Mountain area in southern Shaanxi[J]. Journal of Geomechanics,2019,25(4):544 − 553. (in Chinese with English abstract)]

    ZHOU Jingjing, ZHANG Xiaomin, ZHAO Fasuo, et al. Study on the evaluation of geological hazard risk in Qinba Mountain area in southern Shaanxi[J]. Journal of Geomechanics, 2019, 25(4): 544 − 553. (in Chinese with English abstract)

    [3] 强菲,赵法锁,段钊. 陕南秦巴山区地质灾害发育及空间分布规律[J]. 灾害学,2015,30(2):193 − 198. [QIANG Fei,ZHAO Fasuo,DUAN Zhao. Development and spatial distribution pattern of geological hazards in Qinba Mountain area,southern Shaanxi[J]. Disaster Science,2015,30(2):193 − 198. (in Chinese with English abstract)]

    QIANG Fei, ZHAO Fasuo, DUAN Zhao. Development and spatial distribution pattern of geological hazards in Qinba Mountain area, southern Shaanxi[J]. Disaster Science, 2015, 30(2): 193 − 198. (in Chinese with English abstract)

    [4] 陶宜权,范文,曹琰波,等. 秦巴山区浅表层滑坡灾害监测预警平台设计与实现[J/OL]. 灾害学,(2023-03-23)[2023-06-29]. [TAO Yiquan,FAN Wen,CAO Yanbo,et al. Design and implementation of a monitoring and early warning platform for shallow surface landslide hazards in the Qinba Mountains[J/OL]. Disaster Science,(2023-03-23)[2023-06-29]. http://kns.cnki.net/kcms/detail/61.1097.P.20230222.1702.002.html. (in Chinese with English abstract)]

    TAO Yiquan, FAN Wen, CAO Yanbo, et al. Design and implementation of a monitoring and early warning platform for shallow surface landslide hazards in the Qinba Mountains[J/OL]. Disaster Science, (2023-03-23)[2023-06-29]. http://kns.cnki.net/kcms/detail/61.1097.P.20230222.1702.002.html. (in Chinese with English abstract)

    [5] 周广鹏. 秦巴山区浅表层土石混合体入渗机理试验研究[D]. 长安大学,2019. [ZHOU Guangpeng. Experimental study on infiltration mechanism of shallow surface soil-rock mixture in Qinba Mountain area[D]. Chang’an University,2019. (in Chinese with English abstract)]

    ZHOU Guangpeng. Experimental study on infiltration mechanism of shallow surface soil-rock mixture in Qinba Mountain area[D]. Chang’an University, 2019. (in Chinese with English abstract)

    [6] 韩朝君,李国营,吴玮江,等. 静宁县田堡调蓄水池滑坡成因及稳定性分析[J]. 中国地质灾害与防治学报,2023,34(6):13 − 19. [HAN Chaojun, LI Guoying,WU Weijiang,et al. Causes and stability analysis of the landslide at Tianbao Reservoir in Jingning County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):13 − 19. (in Chinese with English abstract)]

    HAN Chaojun, LI Guoying, WU Weijiang, et al. Causes and stability analysis of the landslide at Tianbao Reservoir in Jingning County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 13 − 19. (in Chinese with English abstract)

    [7] 董林鹭,李鹏,李永红,等. 高应力地下厂房顶拱开挖过程围岩力学响应与稳定性分析[J]. 岩石力学与工程学报,2023,42(5):1096 − 1109. [DONG Linlu,LI Peng,LI Yonghong,et al. Mechanical response and stability analysis of surrounding rock during excavation of top arch of high stress underground plant[J]. Journal of Rock Mechanics and Engineering,2023,42(5):1096 − 1109. (in Chinese with English abstract)]

    DONG Linlu, LI Peng, LI Yonghong, et al. Mechanical response and stability analysis of surrounding rock during excavation of top arch of high stress underground plant[J]. Journal of Rock Mechanics and Engineering, 2023, 42(5): 1096 − 1109. (in Chinese with English abstract)

    [8] 黄润秋,林峰,陈德基. 岩质高边坡卸荷带形成及其工程性状研究[J]. 工程地质学报,2001(3):227 − 232. [HUANG Runqiu,LIN Feng,CHEN Deji. Study on the formation of rocky high slope unloading zone and its engineering properties[J]. Journal of Engineering Geology,2001(3):227 − 232. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2001.03.001

    HUANG Runqiu, LIN Feng, CHEN Deji. Study on the formation of rocky high slope unloading zone and its engineering properties[J]. Journal of Engineering Geology, 2001(3): 227 − 232. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2001.03.001

    [9] 马春驰,李天斌,陈国庆,等. 地下水与开挖作用下堆积层滑坡体滑动机制分析[J]. 工程地质学报,2013,21(6):878 − 884. [MA Chunchi,LI Tianbin,CHEN Guoqing,et al. Analysis of sliding mechanism of landslide under groundwater and excavation[J]. Journal of Engineering Geology,2013,21(6):878 − 884. (in Chinese with English abstract)]

    MA Chunchi, LI Tianbin, CHEN Guoqing, et al. Analysis of sliding mechanism of landslide under groundwater and excavation[J]. Journal of Engineering Geology, 2013, 21(6): 878 − 884. (in Chinese with English abstract)

    [10] 曹春山,吴树仁,潘懋,等. 工程切坡诱发黄土滑坡成因机制研究[J]. 岩土力学,2016,37(4):1049 − 1060. [CAO Chunshan,WU Shuren,PAN Mao,et al. Causative mechanism of loess landslides induced by engineering cut slopes[J]. Geotechnics,2016,37(4):1049 − 1060. (in Chinese with English abstract)]

    CAO Chunshan, WU Shuren, PAN Mao, et al. Causative mechanism of loess landslides induced by engineering cut slopes[J]. Geotechnics, 2016, 37(4): 1049 − 1060. (in Chinese with English abstract)

    [11] 陈涛,吴凤娇,张顺斌,等. 相邻基坑浅开挖引发石峰滑坡大变形原因分析[J]. 地下空间与工程学报,2019,15(S2):1009 − 1015. [CHEN Tao,WU Fengjiao,ZHANG Shunbin,et al. Analysis of the causes of large deformation of Shifeng landslide triggered by shallow excavation of adjacent foundation pit[J]. Journal of Underground Space and Engineering,2019,15(S2):1009 − 1015. (in Chinese with English abstract)]

    CHEN Tao, WU Fengjiao, ZHANG Shunbin, et al. Analysis of the causes of large deformation of Shifeng landslide triggered by shallow excavation of adjacent foundation pit[J]. Journal of Underground Space and Engineering, 2019, 15(S2): 1009 − 1015. (in Chinese with English abstract)

    [12] 彭建兵,吴迪,段钊等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报,2016,51(5):971 − 980. [PENG Jianbing,WU Di,DUAN Zhao,et al. Characteristics and disaster-causing mechanism of loess landslide disasters induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University,2016,51(5):971 − 980. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0258-2724.2016.05.021

    PENG Jianbing, WU Di, DUAN Zhao, et al. Characteristics and disaster-causing mechanism of loess landslide disasters induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 971 − 980. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.2016.05.021

    [13] 蒋涛,崔圣华,冉耀. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例[J]. 中国地质灾害与防治学报,2023,34(3):20 − 30. [JIANG Tao,CUI Shenghua,RAN Yao. Mechanism anal-ysis of landslide induced by coupling of excavation and rainfall:A case study of the landslide at Qianjin Square,Wanyuan,Sichuan[J]. Chinese Journal of Geological Hazards and Control,2023,34(3):20 − 30. (in Chinese with English abstract)]

    JIANG Tao, CUI Shenghua, RAN Yao. Mechanism anal-ysis of landslide induced by coupling of excavation and rainfall: A case study of the landslide at Qianjin Square, Wanyuan, Sichuan[J]. Chinese Journal of Geological Hazards and Control, 2023, 34(3): 20 − 30. (in Chinese with English abstract)

    [14] 卢永兴,肖建章,许冲,等. 蓄水与施工作用下滑坡变形机制与稳定性分析[J]. 工程地质学报,2014,22(3):386 − 395. [LU Yongxing,XIAO Jianzhang,XU Chong,et al. Analysis of landslide deformation mechanism and stability under the action o-f water storage and construction[J]. Journal of Engineering Geology,2014,22(3):386 − 395. (in Chinese with English abstract)]

    LU Yongxing, XIAO Jianzhang, XU Chong, et al. Analysis of landslide deformation mechanism and stability under the action o-f water storage and construction[J]. Journal of Engineering Geology, 2014, 22(3): 386 − 395. (in Chinese with English abstract)

    [15] 周孝鑫,谭钦文,林志果,等. 京广铁路K1219路基土质边坡深层滑移失稳机制与整治对策[J]. 地质科技通报,2022,41(6):85 − 94. [ZHOU Xiaoxin,TAN Qinwen,LIN Zhiguo,et al. Mechanism of deep slide instability and remediation countermeasures for K1219 roadbed soil side slope of Jingguang Railway[J]. Geological Science and Technology Bulletin,2022,41(6):85 − 94. (in Chinese with English abstract)]

    ZHOU Xiaoxin, TAN Qinwen, LIN Zhiguo, et al. Mechanism of deep slide instability and remediation countermeasures for K1219 roadbed soil side slope of Jingguang Railway[J]. Geological Science and Technology Bulletin, 2022, 41(6): 85 − 94. (in Chinese with English abstract)

    [16] 刘宝山,张春鹏,寇林林,等. 黑龙江多宝山铜矿区韧性剪切变形时代及其对铜矿化改造的约束[J]. 地质通报,2024,43(6):885 − 895. [LIU Baoshan,ZHANG Chunpeng,KOU Linlin,et al. The age of ductile shear deformation and its constraint on Cu mineralization transformation in Duobaoshan Cu deposit, Heilongjiang Province[J]. Geological Bulletin of China,2024,43(6):885 − 895. (in Chinese with English abstract)]

    LIU Baoshan, ZHANG Chunpeng, KOU Linlin, et al. The age of ductile shear deformation and its constraint on Cu mineralization transformation in Duobaoshan Cu deposit, Heilongjiang Province[J]. Geological Bulletin of China, 2024, 43(6): 885 − 895. (in Chinese with English abstract)

    [17] 江强强,徐杨青,王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报,2020,28(5):951 − 958. [JIANG Qiangqiang,XU Yangqing,WANG Hao. Experimental study on the shear deformation characteristics of soil-stone mixtures under different stone content conditions[J]. Journal of Engineering Geology,2020,28(5):951 − 958. (in Chinese with English abstract)]

    JIANG Qiangqiang, XU Yangqing, WANG Hao. Experimental study on the shear deformation characteristics of soil-stone mixtures under different stone content conditions[J]. Journal of Engineering Geology, 2020, 28(5): 951 − 958. (in Chinese with English abstract)

    [18] 杨继红,董金玉,黄志全,等. 不同含石量条件下堆积体抗剪强度特性的大型直剪试验研究[J]. 岩土工程学报,2016,38(S2):161 − 166. [YANG Jihong,DONG Jinyu,HUANG Zhiquan,et al. Large-scale direct shear test study on shear strength characteristics of mounded bodies under different rock content conditions[J]. Journal of Geotechnical Engineering,2016,38(S2):161 − 166. (in Chinese with English abstract)]

    YANG Jihong, DONG Jinyu, HUANG Zhiquan, et al. Large-scale direct shear test study on shear strength characteristics of mounded bodies under different rock content conditions[J]. Journal of Geotechnical Engineering, 2016, 38(S2): 161 − 166. (in Chinese with English abstract)

    [19] 陈书平,田作基,徐世东,等. 两种结构类型的走滑相关剪断裂带[J]. 地质通报,2024,43(1):13 − 19. [CHEN Shuping, TIAN Zuoji,XU Shidong,et al. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China,2024,43(1):13 − 19. (in Chinese with English abstract)]

    CHEN Shuping, TIAN Zuoji, XU Shidong, et al. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 2024, 43(1): 13 − 19. (in Chinese with English abstract)

    [20] 交通运输部公路科学研究院. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Institute of Highway Science,Ministry of Transportation and Communications. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:People’s Transportation Press,2020. (in Chinese)]

    Institute of Highway Science, Ministry of Transportation and Communications. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: People’s Transportation Press, 2020. (in Chinese)

    [21] 王剑,应春业,胡新丽,等. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报,2022,41(6):294 − 300. [WANG Jian,YING Chunye,HU Xinli,et al. Laws and mechanisms of shear strength attenuation of gravel soil under immersion[J]. Geoscience and Technology Bulletin,2022,41(6):294 − 300. (in Chinese with English abstract)]

    WANG Jian, YING Chunye, HU Xinli, et al. Laws and mechanisms of shear strength attenuation of gravel soil under immersion[J]. Geoscience and Technology Bulletin, 2022, 41(6): 294 − 300. (in Chinese with English abstract)

    [22] 李庶林,赵睿鸣,彭府华,等. 基于强度折减法的高陡边坡滑坡治理稳定性分析[J]. 建筑科学与工程学报,2020,37(1):120 − 126. [LI Shulin,ZHAO Ruiming,PENG Fuhua,et al. Stability analysis of landslide management on high and steep slopes based on strength discounting method[J]. Journal of Building Science and Engineering,2020,37(1):120 − 126. (in Chinese with English abstract)]

    LI Shulin, ZHAO Ruiming, PENG Fuhua, et al. Stability analysis of landslide management on high and steep slopes based on strength discounting method[J]. Journal of Building Science and Engineering, 2020, 37(1): 120 − 126. (in Chinese with English abstract)

    [23] 涂国祥,黄润秋. 降雨对路堤斜坡稳定性影响的时间效应[J]. 岩土力学,2015,36(S1):523 − 530. [TU Guoxiang,HUANG Runqiu. Time effect of rainfall on embankment slope stability[J]. Geotechnics,2015,36(S1):523 − 530. (in Chinese with English abstract)]

    TU Guoxiang, HUANG Runqiu. Time effect of rainfall on embankment slope stability[J]. Geotechnics, 2015, 36(S1): 523 − 530. (in Chinese with English abstract)

    [24] 冉涛,陈浩,王羽珂,等. 工程开挖活动诱发堆积层滑坡变形机理及加固效果分析[J]. 地质与勘探,2022,58(6):1236 − 1251. [RAN Tao,CHEN Hao,WANG Yuke,et al. Analysis of the deformation mechanism and reinforcement effect of mound landslides induced by engineering excavation activities[J]. Geology and Exploration,2022,58(6):1236 − 1251. (in Chinese with English abstract)]

    RAN Tao, CHEN Hao, WANG Yuke, et al. Analysis of the deformation mechanism and reinforcement effect of mound landslides induced by engineering excavation activities[J]. Geology and Exploration, 2022, 58(6): 1236 − 1251. (in Chinese with English abstract)

    [25] 毛正君,张瑾鸽,仲佳鑫,等. 梯田型黄土滑坡隐患发育特征与成因分析——以宁夏南部黄土丘陵区为例[J]. 中国地质灾害与防治学报,2022,33(6):142 − 152. [MAO Zhengjun,ZHANG Jinge,ZHONG Jiaxin,et al. Characteristics and causes of terraced loess landslides in the loess hilly area of southern Ningxia[J]. The Chinese Journal of Geological Hazards and Control,2022,33(6):142 − 152. (in Chinese with English abstract)]

    MAO Zhengjun, ZHANG Jinge, ZHONG Jiaxin, et al. Characteristics and causes of terraced loess landslides in the loess hilly area of southern Ningxia[J]. The Chinese Journal of Geological Hazards and Control, 2022, 33(6): 142 − 152. (in Chinese with English abstract)

图(16)  /  表(2)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  17
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2024-04-02
  • 录用日期:  2024-04-06
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回