Collapse characteristics and influencing factors of wind-blown sands in the southern margin of Mu Us Desert, Yulin, Shaanxi Province
-
摘要:
随着中国干旱、半干旱地区的开发与发展,湿陷性沙土对工程建设的危害日益显著。为探明沙土的湿陷规律及其影响因素,文章以毛乌素沙漠南缘风积沙土为研究对象,首先,通过控制单因素室内压缩试验,研究不同工况下风积沙的湿陷规律;其次,采用 PFC3D(三维颗粒流软件)对风积沙土室内压缩试验进行数值模拟,探究不同孔隙率、不同颗粒组成对沙土湿陷性的影响。研究结果表明:沙土湿陷系数随压力呈先升后降的变化趋势,压力为 150 kPa 时取得湿陷系数最大值;随着干密度或含水率的增大,沙土湿陷系数减小。相较于含水率,干密度对沙土湿陷性的影响更大;风积沙土的湿陷系数与孔隙率之间呈正相关关系,毛乌素沙漠南缘风积沙土的湿陷起始孔隙率为 0.425;当 0.075~0.25 mm、0.25~0.5 mm两粒组颗粒含量之比为 0.35∶0.65 时,沙土湿陷性最大。研究结果较全面地描述了沙土室内压缩试验从宏观到微观的全过程,从多尺度揭示了沙土湿陷性的湿陷规律及其影响因素,可为毛乌素沙漠地区工程建设提供参考,同时为沙土在颗粒流数值模拟方面的研究提供了一定的思路和依据。
Abstract:With the development of arid and semi-arid regions in China, the hazards posed by collapsible sands to engineering construction have become increasingly significant. In order to investigate the collapsibility regularity and its influencing factors of sand soils, this paper focuses on the wind-blown sands at the southern edge of the Maowusu Desert. Initially, by controlling the single factor laboratory compression tests, the collapsibility regularity of wind-blown sand under different working conditions was investigated. Subsequently, using PFC3D (three-dimensional particle flow software) for numerical simulation of the laboratory compression tests on wind-blown sands, the paper explores the effects of different porosities and particle compositions on the collapsibility of sandy soils. The research results indicate that the collapsibility coefficient of sandy soils shows a trend of first increasing and then decreasing with pressure, reaching its maximum value at 150 kPa. With the increase in dry density or moisture content, the collapsibility coefficient of sand decreases. Compared to moisture content, dry density has a greater impact on the collapsibility of sandy soils. There is a positive correlation between the collapsibility coefficient of wind-blown sand and its porosity. The initial porosity of the collapsibility of the wind-blown sand on the southern edge of the Maowusu Desert is 0.425. When the ratio of particle content between 0.075~0.25 mm and 0.25~0.5 mm is 0.35∶0.65, the collapsibility of sandy soils is maximized. The research results comprehensively describe the entire process of laboratory compression tests on sand from macro to micro levels, revealing the collapsibility regularity and its influencing factors on wind-blown sand from multiple scales. This can provide a reference for engineering construction in the Maowusu Desert and provide certain ideas and basis for the research on particle flow numerical simulation of sand.
-
0. 引言
我国西南岩溶山区地质环境脆弱,多形成“上硬下软、上陡下缓”的孕灾地貌,加上人类工程活动强烈,极端降雨频发,是我国高位远程崩滑灾害的高易发区[1]。这种高位远程滑坡不仅监测预警难、突发性高,并且动力致灾过程复杂,形成了大量造成群死群伤的灾害事件[2 − 4]。
2019年7月23日20时,贵州省水城县鸡场镇坪地村岔沟组发生高位滑坡,大约1.50×106 m3的滑体高速下滑,铲刮坡面的松散堆积物,形成体积约为2.00×106 m3的堆积体,造成了43人遇难,9人失踪,直接经济损失约10 300万元。水城滑坡发生后,很多学者对其启动机理、动力学过程、铲刮作用等进行了分析。Zhang等[5]基于DAN模拟和滑震信号反演对水城滑坡动力学过程进行了分析;Zhuang等[6]采用电镜扫描、高密度电法、数值模拟等手段多源协同研究了水城滑坡的高速远程动力学特征;高浩源等[7]分析了水城滑坡运动过程和冲击铲刮特征,认为铲刮可分为冲击嵌入-剪切推覆-裹挟混合三个阶段;郑光等[8]阐述了水城滑坡发生的成因机理,并分析了滑坡的动力学过程;李华等[9]探讨了公路切坡和持续降雨对水城滑坡稳定性的影响,并分析了滑坡的形成机制。刘建强等[10]基于主成分分析方法,研究了水城滑坡水−岩(土)作用过程与对滑坡稳定性的影响。Guo等[11]基于地形地貌对水城滑坡动力学过程进行了详细的研究。
水城滑坡后,斜坡残留大量滑体堆积物,在降雨诱发条件下,存在二次滑坡的隐患。然而,当前对水城滑坡的研究主要集中于“7•23”水城滑坡的失稳机理与动力学过程,针对滑后的残留堆积体和边坡的稳定性分析与潜在动力致灾范围的研究还十分欠缺。
本文基于无人机、钻探等滑坡现场调查手段,探明了水城滑坡地质环境条件,阐述了滑坡的基本特征,分析了滑坡成因与破坏模式;基于传递系数法,首次对滑坡后的残留堆积物与附近不稳定斜坡进行了不同降雨条件的稳定性分析,并对二次滑坡动力致灾机理进行了研究分析。
1. 水城滑坡地质环境条件
1.1 地质条件
水城位于云贵高原中部,地形总体西北高、东南低,属于侵蚀、溶蚀地貌。构造位于扬子准地台,断层发育,地质构造复杂,节理裂隙较为发育,风化、卸荷等地质作用明显,对水城滑坡的发育起到综合控制影响作用。
水城区气候温和,雨量充沛,年平均气温11~17 °C,降水主要集中在6—8月,年均降雨940~
1450 mm。据六盘水市气象局提供资料,滑坡发生前一周内水城区日平均降雨量较大。7月18日20时—23日20时,水城区鸡场镇累计降雨量鸡场站点141.8 mm,坪地村站点189.1 mm。7月23日15时03分六盘水市自然资源局联合市气象局发布地质灾害气象风险黄色预警。研究区滑前地形地貌图如图1所示,斜坡顶部高程约为
2070 m,坡底高程1250 m;整体地形较为平缓,滑坡区域发育有两条冲沟;斜坡整体呈折线型,存在三级缓坡。滑坡主要地层岩性为二叠系峨眉山玄武岩组;区内出露地层有第四系残坡积,下三叠统飞仙关组(T1f),上二叠统龙潭组(P3l),上二叠统峨眉山玄武岩组(P3β)及中二叠统茅口组(P2m)。
滑坡区域内人类工程活动强烈,包括斜坡中下部居民房屋及斜坡上部X244公路的建设;其中,X244公路1984年建成,2016、2018年两次改扩建,未实施防护工程,对周边地质环境破坏较为严重,削弱了滑体的抗剪强度,对滑坡的形成有一定的影响。
1.2 滑坡基本特征
水城滑坡发生前后影响对比见图2。滑坡主滑方向20°~26°,整个滑坡区域呈长条形,平均坡度约24°,滑坡体总长
1250 m,宽200~600 m,滑坡体后缘陡壁高程约1665 m,坡脚岔沟处海拔约为1200 m,相对高差465 m,沿主滑方向最大运动距离约为1250 m,滑坡面积约4×104 m2,滑坡体积约2.00×106 m3。滑坡源区后缘为小平台,滑坡发生后在源区后部形成了一处高差50~60 m的玄武岩基岩后壁(图3),壁面呈弧形起伏,为一贯通性较好的长大节理面组成,基岩壁壁面产状:20°~40°∠38°~53°(顺坡向面理);岩体发育三组主要片理:①40°∠53°(外倾),②20°∠38°(外倾),③184°∠52°(内倾);滑坡后壁上覆为厚约2 m的残坡积层,下伏为弱风化块状岩体,岩性为杏仁状玄武岩、凝灰岩。基于原公路处钻孔结果,钻探施工深度超过原路面高程近10 m均未见到原公路路基物质成分,故推测滑坡剪出口位于县道以下位置,高程范围为
1505 ~1515 m。滑坡左侧残留体较薄,至左侧边界陡坎下部,残留体被水流冲蚀后,底部出露墨绿-绿白色凝灰岩基岩面。滑坡残留体与滑坡左侧边界之间为陡坎,陡坎为土层覆盖,颗粒粒径较细,推测为弯道超高导致的土体薄层覆盖。
滑坡右侧为小山脊,岩土体滑走后在滑坡区右侧和右后侧形成了基岩陡壁(图4),高差30~40 m。由于陡壁突然临空,上部的残积层和强风化岩体二次失稳,形成数个小型垮塌体覆盖在滑坡残留体后部,这些小滑塌宽度30~40 m,前后高差约20 m,体积
6000 ~8000 m3。原位于滑坡区右后侧的一处混凝土民房随滑体滑移后破坏(图3、图4),经测量运动距离约122 m,运动方向为24°。基于研究区域的基本孕灾条件、工程活动扰动与滑后侧面临空条件,水城滑坡源区右侧存在不稳定隐患区域,如图4标识所示。不稳定斜坡右侧边界根据地貌特征,以其右侧冲沟为界,如图4黄线标识所示。斜坡坡向为25°~32°,整个斜坡区域呈“上窄下宽”的长条形,斜坡现状地形整体呈起伏波状,斜坡单元后缘区域较平缓,中部有一个平台,前缘为缓坡区(坪寨组居民区),坡度约15°~32°,斜坡体总长
1030 m,宽70~305 m,斜坡体后缘高程约1595 m,坡脚坪寨组前缘冲沟处海拔约为1155 m,相对高差440 m,整个斜坡面积约19.4×104 m2,根据现场调查及物探结果显示,斜坡岩土体结构从上至下为第四系残破积含砾粉质黏土、碎石土及上二叠统峨眉山玄武岩组(P3β)的玄武岩,第四系堆积层及散体-碎裂结构的强风化玄武岩平均厚度约15 m。第四系残破积含砾粉质黏土、碎石土,碎石块粒径一般为3~6 cm,碎石含量约35%,偶含直径大于1.0 m的块石,碎块石原岩成分为玄武岩;在坪寨组居民区前缘坡脚公路边坡处可见堆积层具一定韵律性,如图5所示。图5中,①为碎石土,顶部为根植层;②③为含碎石粉质黏土,分界线处渗水。2. 滑坡成因分析
水城滑坡的变形特征、产生现象并结合环境地质条件综合分析,滑坡发生主要形成因素为地形特征、斜坡岩土体特征、水文地质条件及极端天气、人类工程活动等。
2.1 形成条件
滑坡发生前斜坡整体地形较为平缓,滑坡部位斜坡呈波状起伏,有三级缓坡平台(后缘顶部平台、中上部平台及中下部缓坡平台),中上部平台区域(滑源区)没有系统的排水通道,不利地表水排泄,且在斜坡上呈“陡缓陡”地形,陡坡部位临空条件较好,坡度为35°~50°,临空高度达大于10 m,为滑坡失稳提供了条件。
调查区覆盖层主要成分为斜坡中上部的残坡积粉质黏土及中下部的滑坡堆积层碎石土,滑坡堆积层较厚(图5),下伏地层为上二叠统峨眉山玄武岩组(P3β)的玄武岩,岩体节理裂隙发育,强风化层呈散体-碎裂结构(图6)。
综合现场调查、钻孔揭露及物探成果,上覆土层及破碎强风化玄武岩厚度约15~41 m;含大量碎石,抗剪强度较低,在受扰动的情况下,因自身重力容易下滑。其次,大量地表水易下渗在岩土交界面及强风化层界面上汇聚,长期受地下水浸泡影响,强风化玄武岩和表层黏土层抗剪强度降低,进而造成斜坡岩土体失稳。
地下水的主要类型为第四系孔隙水和基岩(玄武岩)裂隙水,主要补给源为大气降水。根据现场调查来看,滑坡区受大气降雨影响明显。滑坡体后缘汇水面积较大,降雨条件下,后缘大量地表水漫流下渗,致使地下水水位抬高,并向滑坡体前缘斜坡体上排出。高水位的地下水对堆积体产生强大浮托力,不利斜坡稳定。
2.2 诱发因素
降雨是水城滑坡形成的主要诱发因素。首先,雨水浸润后缘岩土体自重增大;其次,降雨导致滑面强风化玄武岩和黏土层软化,抗剪强度降低,后缘岩土体剪切下错,对中部岩土体产生水平推力,推动中部及前缘岩土体滑动,从而促进了滑动面的形成;最后,大量雨水沿覆盖层下渗,富集于滑带处,抬高了地下水水位,对滑体土产生强大的浮托力,且长期浸泡降低了前缘抗滑岩土体的物理力学指标,从而引起坡体失稳。
滑源区公路建设开挖,改变了原有地形地貌,破坏原始斜坡力学平衡,卸荷作用强烈,且公路开挖形成的高陡边坡又为滑坡的形成提供了良好的位移空间。
综上来看,滑坡区处于地质破碎带,覆盖层松散且较厚,岩体风化强烈,山高坡陡,强降雨导致土体和强风化岩体饱和,形成了地下高水位,降低了岩土体的摩擦系数及抗滑力,斜坡上 X244 县道施工坡面清理降低了山体阻滑的能力,在重力和降雨的作用下,导致山体失稳,并转化为高位远程滑动,形成特大型滑坡地质灾害。滑坡体变形、破坏模式分析详见表1。
表 1 滑坡成因分析一览表Table 1. Overview of landslide causation analysis of the Shuicheng landslide主要
影响
因素地形
地貌滑坡体发育于波状起伏地形的斜坡体上,后缘为平台区,汇水面积较大。坡体呈“陡缓陡”交替分布,地面起伏较大,滑源区没有系统的排水通道,不利地表水排泄。斜坡上呈“陡缓陡”地形,陡坡部位临空条件较好,坡度35°~50°,临空高度大于10 m,为滑坡失稳提供了条件 地层
岩性根据钻探及物探资料显示,滑坡体主要为第四系坡堆积层及强风化玄武岩,强风化层呈散体-碎裂结构,抗剪强度较低;其次,大量地表水易下渗在强风化层界面上汇聚,长期受地下水浸泡影响,界面处岩土体强度易降低,不利坡体稳定 水文
条件根据现场调查来看,滑坡区受大气降雨影响明显。滑坡体后缘汇水面积较大,降雨条件下,后缘大量地表水漫流下渗,致使地下水水位抬高,并向滑坡体前缘斜坡体上排出。高水位的地下水对堆积体产生强大浮托力,不利斜坡稳定 诱发
外因降雨是滑坡形成的主要诱发因素,一方面增加了坡体自重,另一方面大量雨水沿覆盖层下渗,富集于滑带处,长期浸泡降低了滑带土的物理力学指标,不利于坡体稳定。同时后缘大面积的汇水抬高地下水水位,向沟道排出,对堆积体产生强大的浮托力,降低坡体稳定;
斜坡上公路开挖形成高边坡,改变了原有地形地貌,破坏原始斜坡力学平衡,且公路开挖形成的高陡边坡又为滑坡的形成提供了良好的位移空间变形模式 滑坡在强降雨作用下,大量雨水下渗浸泡后,产生强大浮托力,坡体在自重作用下,易沿底部强风化层界面向下部临空侧整体发生滑动变形,为一推移式变形破坏滑坡 破坏模式 综合现场调查、钻孔揭露及物探成果,水城区鸡场镇坪地村岔沟组滑坡物质组成分为三层,自上而下分别为:第四系堆积层,强风化玄武岩及中风化玄武岩层;根据钻探、物探资料及现场变形特征推测,滑坡的破坏模式可能为在堆积层及强风化玄武岩层范围内产生似圆弧型滑动,及在堆积层与基岩界面产生折线滑动 3. 斜坡稳定性与二次滑坡动力致灾分析
3.1 稳定性分析
水城滑坡后,斜坡残留大量滑体堆积物、两条冲沟之间存在未滑区域;沿1−1′剖面,滑体强风化层较厚,拟定强风化层界面为斜坡整体滑动的潜在滑动面,潜在剪出口位于斜坡底部(图7黄色线);将1−1′剖面原水城滑坡剪出口作为对照组,采用滑前地形,累积滑源区条形地基的混凝土民房作为附加荷载,稳定性分析验算。1−1′剖面对照滑面与主要滑面的稳定性分析模型如图8a—b所示。
其次,滑后地形导致右侧边界附近斜坡临空,卸荷严重;在强降雨条件下,原水城滑坡区域边界右侧外容易形成不稳定斜坡,如图7中2−2′所示。对于右侧不稳定斜坡2−2′剖面(图9):①右侧斜坡地形地貌、岩土体结构、水文地质等条件基本与已滑动区一致,加之X244公路建设期间工程活动影响,切坡卸荷现象严重,结合钻孔资料,钻探施工深度超过原路面高程近10 m均未见到原公路路基物质成分,故拟定右侧不稳定斜坡主要潜在剪出口位于县道以下位置;②基于右侧斜坡现状基本特征,堆积层及强风化层较厚,拟定强风化层界面长节理面作为次级潜在滑面,剪出口位于右侧斜坡缓坡平台后缘陡坡底部。2−2′剖面主要潜在滑面与次级潜在滑面的稳定性分析模型如图9 a—b所示。
对水城滑坡区域基覆面土体进行现场取样(图8钻孔处),取土体的残余剪抗剪强度指标;由滑带土样室内试验成果数理统计得,天然抗剪强度c值为10.2 kPa,φ值为22.6°;饱和抗剪强度c值为9.8 kPa,φ值为22.3°。
对右侧不稳定斜坡区域基覆面土体进行钻孔取样(图9钻孔处),取土体峰值剪抗剪强度指标;由滑带土样室内试验成果数理统计得,天然抗剪强度c值为10.8 kPa,φ值为23.1°;饱和抗剪强度c值为10.1 kPa,φ值为22.5°。
选取①自重+天然水位作为基础工况、②自重+ 1/3饱水作为水城滑坡降雨工况以及③自重+2/3饱水作为极端降雨工况进行分析。根据现场野外调研情况,滑坡后壁上覆为厚约2 m的残破积层,呈浸湿状态。基于李华等[9]研究,水城滑坡后缘玄武岩壁见大量的水从玄武岩-残坡积土间隙中大量渗出;此外,李华等认为存在3 m 的毛细水上升高度,将地下水位线以下的风化玄武岩视为饱和状态;因此,结合稳定性分析中滑体条块的厚度数据,选取了1/3饱水平均厚度作为水城滑坡降雨条件下稳定性分析的入渗。2/3饱水厚度是对应百年一遇降雨或郑州“7•20”暴雨等极端情况做的饱水厚度假设,郑州“7•20”暴雨短时内高达200 mm/h的雨型达到了超蓄产流条件,土壤基本处于饱和状态;此外,水城滑坡汇水面积较大,因此本文选取了2/3饱水厚度作为极端降雨条件下的土壤饱和厚度。
本文基于传递系数法对斜坡稳定性进行计算,其控制方程为:
(1) 式中:
——抗滑力; ——下滑力; ——传递系数,下标代表条块序号。依据《滑坡防治工程勘察规范》评价标准,结果如表2所示。
表 2 稳定性计算结果表Table 2. Slope stability calculation results剖面 滑面 计算工况 稳定系数 评价 1−1′ 主要滑面 自重+天然水位 1.174 稳定 自重+ 1/3饱水 1.073 基本稳定 自重+2/3饱水 1.035 欠
稳定对照滑面 自重+附加荷载+天然水位 1.122 基本稳定 自重+附加荷载+1/3饱水 1.037 欠
稳定自重+附加荷载+2/3饱水 0.996 不
稳定2−2′ 主要滑面 自重+天然水位 1.135 基本稳定 自重+ 1/3饱水 1.021 欠
稳定自重+ 2/3饱水 0.989 不
稳定次级滑面 自重+天然水位 1.302 稳定 自重+1/3饱水 1.105 基本稳定 自重+ 2/3饱水 1.064 基本稳定 在自重+天然水位工况时:1−1′剖面的主要滑面与对照滑面稳定系数为1.174和1.122,处于稳定与基本稳定状态;2−2′剖面的主要滑面与次级滑面的稳定系数为1.135和1.302,处于稳定与基本稳定状态;
在自重+1/3饱水工况时:1−1′剖面的主要滑面与对照滑面稳定系数为1.073和1.037,处于基本稳定与欠稳定状态;2−2′剖面的主要滑面与次级滑面的稳定系数为1.021和1.105,处于欠稳定与基本稳定状态;
在自重+2/3饱水工况时:1−1′剖面的主要滑面与对照滑面稳定系数为1.035和0.996,处于欠稳定与不稳定状态;2−2′剖面的主要滑面与次级滑面的稳定系数为0.989和1.064,处于不稳定与基本稳定状态。
对水城滑坡区域(1−1′剖面)及右侧不稳定斜坡(2−2′剖面)稳定性进行的计算分析,由于对照组计算结果与滑坡实际情况基本吻合,验证了原滑坡区域残留堆积物、未滑区域与右侧不稳定斜坡在暴雨工况下的稳定性计算结果可信。在极端降雨工况下,水城滑坡残留堆积物与未滑区域处于欠稳定状态,右侧不稳定斜坡沿主要滑面处于不稳定状态。极端暴雨下,右侧不稳定斜坡首先发生破坏。因此,需要对右侧不稳定斜坡进行动力致灾分析。
3.2 右侧不稳定斜坡动力致灾分析
高速远程滑坡-碎屑流往往呈现出流态化的动力学特征[12],滑体运动控制方程的形式与浅水方程类似,其笛卡尔坐标系下的守恒方程表述为:
(2) (3) (4) 式中:h——滑体厚度;
u、v——x、y方向的速度;
t——时间;
zt (x, y)——底坡高程;
τ——摩擦项,其下标代表摩擦方向。
Xing等[13]基于环剪试验与数值模拟方法,验证了包括摩擦项和湍流项的 Voellmy流变模型适合模拟高速远程滑坡动力学过程。Voellmy流变模型为:
(5) 式中:f——摩擦系数;
ξ——湍流系数;
σz——正应力,定义方程为:
(6) 式中:R——曲率半径;
α——坡度。
根据稳定性分析结果,基于Matlab编程,采用Lax-Wendroff差分格式对方程组(2)—(4)进行离散并数值求解,得到右侧不稳定斜坡破坏后的动力致灾过程(图10)。
如图10所示,当不稳定斜坡(2−2′)沿主要滑面发生破坏时,滑体沿左前方剪出,向左侧水城滑坡源区发生倾倒;5 s后土质滑体逐渐解体,其中大量滑体沿原水城滑坡的滑移路径在重力作用下加速滑动,少量滑体解体后与水城滑坡右侧边界外下滑;20 s后,滑体主体沿水城滑坡右侧冲沟滑移,少量滑体沿水城滑坡右侧边界外沟谷滑动;最终滑体主体停在水城滑坡右侧冲沟前缘,少量滑体沿右侧边界外的沟谷堆积分布。
水城滑坡滑体高速滑移,铲刮裹挟了大量的表层松散土体,为右侧不稳定斜坡二次滑坡创造了优势滑移路径;右侧冲沟内的曲率半径较小,导致滑体在冲沟内受到的支撑力与摩擦阻力较大,造成二次滑坡在冲沟内的减速与堆积。
受控制方程的限制,模拟中将滑床视为不可铲刮的刚体;然而,水城滑坡后,仍有大量滑坡堆积物残留于斜坡上。不稳定斜坡二次滑坡冲击、铲刮等运动过程中,铲刮裹挟松散的残留堆积物,甚至造成残留堆积物的破坏与启动,可能导致滑体大量增积、滑移路径增加和动力致灾范围变大,严重威胁斜坡下部岔沟组及坪寨组居民及斜坡前缘区域内公共设施的生命财产安全。
4. 结论
(1) 水城滑坡处于地质破碎带,覆盖层松散且较厚,岩体风化强烈,山高坡陡,强降雨导致土体和强风化岩体饱和,形成了地下高水位,降低了岩土体的摩擦系数及抗滑力,斜坡上X244县道施工坡面清理降低了山体阻滑的能力,在重力和降雨的作用下,导致山体失稳,并转化为高位远程滑动,形成特大型滑坡地质灾害。
(2) 对水城滑坡区域及右侧不稳定斜坡稳定性进行的计算分析,基于对照组验证了稳定性计算结果可信。在百年一遇暴雨工况下,水城滑坡残留堆积物与未滑区域处于基本稳定状态,右侧不稳定斜坡沿主要滑面处于欠稳定状态。
(3) 水城滑坡后,仍有大量滑坡堆积物残留于斜坡上。极端降雨可能诱发不稳定斜坡二次滑坡运动,滑体铲刮裹挟松散的残留堆积物,可能导致残留堆积物的破坏与启动,造成滑体大量增积、滑移路径增加及动力致灾范围变大,严重威胁斜坡下部岔沟组及坪寨组居民及斜坡前缘区域内公共设施的生命财产安全。
-
表 1 场地基本物理特性指标
Table 1 Basic physical charecteristics of the site
参数 密度/(g·m−3) 含水率/% 干密度/(g·m−3) 比重 孔隙比 饱和密度/(g·m−3) 饱和度 最小干密度/(g·m−3) 最大干密度/(g·m−3) 数值 1.587 4.5 1.519 2.616 0.722 1.938 16.3 1.38 1.77 表 2 室内压缩试验结果
Table 2 Laboratory compression test results
试样
编号干密度
/(g·cm−3)含水率/% 粒径区间/mm 湿陷系数 湿陷等级 1 1.40 3 0.075~0.250 0.02650 轻微湿陷 2 1.45 3 0.075~0.250 0.02225 轻微湿陷 3 1.50 3 0.075~0.250 0.01625 轻微湿陷 4 1.55 3 0.075~0.250 0.00100 无湿陷 5 1.40 6 0.075~0.250 0.02550 轻微湿陷 6 1.45 6 0.075~0.250 0.02200 轻微湿陷 7 1.50 6 0.075~0.250 0.01725 轻微湿陷 8 1.55 6 0.075~0.250 0.00050 无湿陷 9 1.40 9 0.075~0.250 0.02450 轻微湿陷 10 1.45 9 0.075~0.250 0.02050 轻微湿陷 11 1.50 9 0.075~0.250 0.01850 轻微湿陷 12 1.55 9 0.075~0.250 0.00050 无湿陷 表 3 数值模拟结果
Table 3 Numerical simulation results
试样编号 颗粒比重 干密度/(g·cm−3) 含水率/% 湿陷系数 模拟湿陷系数 孔隙率 粒径区间/mm 法向接触刚度 切向接触刚度 摩擦系数 1 2.65 1.40 3 0.02650 0.02700 0.465 0.075~0.250 0.350 2 2.65 1.45 3 0.02225 0.02243 0.446 0.075~0.250 0.370 3 2.65 1.50 3 0.01625 0.01633 0.427 0.075~0.250 0.360 4 2.65 1.55 3 0.00100 0.00110 0.407 0.075~0.250 0.350 5 2.65 1.40 6 0.02550 0.02580 0.465 0.075~0.250 0.270 6 2.65 1.45 6 0.02200 0.02230 0.446 0.075~0.250 0.270 7 2.65 1.50 6 0.01725 0.01733 0.427 0.075~0.250 0.273 8 2.65 1.55 6 0.00050 0.00070 0.407 0.075~0.250 0.271 9 2.65 1.40 9 0.02450 0.02500 0.465 0.075~0.250 0.232 10 2.65 1.45 9 0.02050 0.02020 0.446 0.075~0.250 0.230 11 2.65 1.50 9 0.01850 0.01820 0.427 0.075~0.250 0.230 12 2.65 1.55 9 0.00050 0.00030 0.407 0.075~0.250 0.231 -
[1] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)] FAN Wen, WEI Yani, YU Bo, et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144 − 156. (in Chinese with English abstract)
[2] 侯彦凯. 戈壁地区粗粒土地基湿陷特性研究[J]. 铁道工程学报,2016,33(6):31 − 34. [HOU Yankai. Research on the collapse characteristics of coarse grained soil in Gobi region[J]. Journal of Railway Engineering Society,2016,33(6):31 − 34. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2106.2016.06.007 HOU Yankai. Research on the collapse characteristics of coarse grained soil in Gobi region[J]. Journal of Railway Engineering Society, 2016, 33(6): 31 − 34. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2106.2016.06.007
[3] 苏建德. 沙漠区沙土类土湿陷性研究[J]. 岩土工程界,2001(8):27 − 29. [SU Jiande. Study on collapsibility of sandy soil in desert area[J]. Geological Exploration for Non-ferrous Metals,2001(8):27 − 29. (in Chinese)] SU Jiande. Study on collapsibility of sandy soil in desert area[J]. Geological Exploration for Non-ferrous Metals, 2001(8): 27 − 29. (in Chinese)
[4] 曾正中,张明泉,梁宗仁,等. 腾格里沙漠南缘风积砂土地基的工程地质特性[J]. 西北水电,2001(3):18 − 20. [ZENG Zhengzhong,ZHANG Mingquan,LIANG Zongren,et al. Engineering geological features of eolian deposit sandy soil ground at southern edge of the Tenggeli Desert[J]. Northwest Water Power,2001(3):18 − 20. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2610.2001.03.006 ZENG Zhengzhong, ZHANG Mingquan, LIANG Zongren, et al. Engineering geological features of eolian deposit sandy soil ground at southern edge of the Tenggeli Desert[J]. Northwest Water Power, 2001(3): 18 − 20. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2610.2001.03.006
[5] 曾正中,张明泉,黄明源. 腾格里沙漠南缘风积砂土湿陷性研究[J]. 甘肃科学学报,2000,12(2):63 − 68. [ZENG Zhengzhong,ZHANG Mingquan,HUANG Mingyuan. A study on the collapsibility of the eolian sand on the south edge of the tenggeli desert[J]. Journal of Gansu Sciences,2000,12(2):63 − 68. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-0366.2000.02.014 ZENG Zhengzhong, ZHANG Mingquan, HUANG Mingyuan. A study on the collapsibility of the eolian sand on the south edge of the tenggeli desert[J]. Journal of Gansu Sciences, 2000, 12(2): 63 − 68. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-0366.2000.02.014
[6] 武立波,胡冰涛,尹志远,等. 宁东粉细砂的物理力学特性分析[J]. 工程建设与设计,2012(9):129 − 131. [WU Libo,HU Bingtao,YIN Zhiyuan,et al. Analysis of physico-mechanical characteristics of fine sand in ningdong rigion[J]. Construction & Design for Project,2012(9):129 − 131. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-9467.2012.09.034 WU Libo, HU Bingtao, YIN Zhiyuan, et al. Analysis of physico-mechanical characteristics of fine sand in ningdong rigion[J]. Construction & Design for Project, 2012(9): 129 − 131. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-9467.2012.09.034
[7] 胡玮,李云川,史成江. 中卫地区粉砂土湿陷特性及影响因素探讨[J]. 宁夏工程技术,2017,16(2):178 − 182. [HU Wei,LI Yunchuan,SHI Chengjiang. Analysis of the collapsibility characteristics and its affecting factors of silt sand in Zhongwei Districts[J]. Ningxia Engineering Technology,2017,16(2):178 − 182. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-7244.2017.02.018 HU Wei, LI Yunchuan, SHI Chengjiang. Analysis of the collapsibility characteristics and its affecting factors of silt sand in Zhongwei Districts[J]. Ningxia Engineering Technology, 2017, 16(2): 178 − 182. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-7244.2017.02.018
[8] 杨瑞雪,崔自治,郄玥颖,等. 细粒含量对银川细砂压缩及压缩水敏性的影响[J]. 广西大学学报(自然科学版),2018,43(3):1143 − 1148. [YANG Ruixue,CUI Zizhi,QIE Yueying,et al. Effects of fine grain content on compression and water sensitivity of Yinchuan fine sand[J]. Journal of Guangxi University (Natural Science Edition),2018,43(3):1143 − 1148. (in Chinese with English abstract)] YANG Ruixue, CUI Zizhi, QIE Yueying, et al. Effects of fine grain content on compression and water sensitivity of Yinchuan fine sand[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(3): 1143 − 1148. (in Chinese with English abstract)
[9] 刘峰,李超. 某沙漠明渠基础变形分析及处理对策[J]. 中国水运(下半月),2021,21(7):99 − 100. [LIU Feng,LI Chao. Deformation analysis and treatment countermeasures of a desert open channel foundation[J]. China Water Transport,2021,21(7):99 − 100. (in Chinese)] LIU Feng, LI Chao. Deformation analysis and treatment countermeasures of a desert open channel foundation[J]. China Water Transport, 2021, 21(7): 99 − 100. (in Chinese)
[10] 韩永强,石宇涵. 粉细砂湿陷性研究[J]. 四川建材,2015,41(6):24 − 26. [HAN Yongqiang,SHI Yuhan. Study on collapsibility of silty fine sand[J]. Sichuan Building Materials,2015,41(6):24 − 26. (in Chinese)] DOI: 10.3969/j.issn.1672-4011.2015.06.013 HAN Yongqiang, SHI Yuhan. Study on collapsibility of silty fine sand[J]. Sichuan Building Materials, 2015, 41(6): 24 − 26. (in Chinese) DOI: 10.3969/j.issn.1672-4011.2015.06.013
[11] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. 岩土力学,2010,31(增刊1):121 − 126. [LIU Zhenghong,LIAO Yanhong,ZHANG Yushou. Preliminary study of physico-mechanical properties of Luanda sand [J]. Rock and Soil Mechanics,2010,31(Sup 1):121 − 126. (in Chinese with English abstract)] LIU Zhenghong, LIAO Yanhong, ZHANG Yushou. Preliminary study of physico-mechanical properties of Luanda sand [J]. Rock and Soil Mechanics, 2010, 31(Sup 1): 121 − 126. (in Chinese with English abstract)
[12] 彭友君,岳栋,彭博,等. 安哥拉格埃路砂地层的承载力研究[J]. 岩土力学,2014,35(增刊2):332 − 337. [PENG Youjun,YUE Dong,PENG Bo,et al. Research on bearing capacity of Angola Quelo sand strata [J]. Rock and Soil Mechanics,2014,35(Sup 2):332 − 337. (in Chinese with English abstract)] PENG Youjun, YUE Dong, PENG Bo, et al. Research on bearing capacity of Angola Quelo sand strata [J]. Rock and Soil Mechanics, 2014, 35(Sup 2): 332 − 337. (in Chinese with English abstract)
[13] 唐国艺,唐立军,刘智,等. 安哥拉罗安达湿陷性砂的载荷试验研究[J]. 水文地质工程地质,2018,45(5):108 − 113. [TANG Guoyi,TANG Lijun,LIU Zhi,et al. Research on collapsible sand under plate load test in Luanda,Angola[J]. Hydrogeology & Engineering Geology,2018,45(5):108 − 113. (in Chinese with English abstract)] TANG Guoyi, TANG Lijun, LIU Zhi, et al. Research on collapsible sand under plate load test in Luanda, Angola[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 108 − 113. (in Chinese with English abstract)
[14] 孙宏伟,董勤,石峰. 南部非洲红砂地基工程特性初探[J]. 建筑结构,2015,45(18):105 − 107. [SUN Hongwei,DONG Qin,SHI Feng. Preliminary discussion on geotechnical characteristics of red sand in southern Africa[J]. Building Structure,2015,45(18):105 − 107. (in Chinese with English abstract)] SUN Hongwei, DONG Qin, SHI Feng. Preliminary discussion on geotechnical characteristics of red sand in southern Africa[J]. Building Structure, 2015, 45(18): 105 − 107. (in Chinese with English abstract)
[15] 张富华. 安哥拉罗安达地区湿陷性砂土地基基础设计[J]. 建筑结构,2016,46(增刊1):821 − 823. [ZHANG Fuhua. Foundation design of collapsible sand ground in Luanda' Angola [J]. Building Structure,2016,46(Sup 1):821 − 823. (in Chinese with English abstract)] ZHANG Fuhua. Foundation design of collapsible sand ground in Luanda' Angola [J]. Building Structure, 2016, 46(Sup 1): 821 − 823. (in Chinese with English abstract)
[16] 刘彬,张庚成,李荣先. 尼日尔风积砂土湿陷性试验研究与评价[J]. 中国海洋大学学报(自然科学版),2016,46(7):99 − 104. [LIU Bin,ZHANG Gengcheng,LI Rongxian. Experimental study and evaluation on collapsibility of wind-blown sand in Niger[J]. Periodical of Ocean University of China,2016,46(7):99 − 104. (in Chinese with English abstract)] LIU Bin, ZHANG Gengcheng, LI Rongxian. Experimental study and evaluation on collapsibility of wind-blown sand in Niger[J]. Periodical of Ocean University of China, 2016, 46(7): 99 − 104. (in Chinese with English abstract)
[17] 姚晨辉,夏玉云,吴学林,等. 巴基斯坦塔尔沙漠风积砂土湿陷性特征[J]. 长江科学院院报,2021,38(5):131 − 136. [YAO Chenhui,XIA Yuyun,WU Xuelin,et al. Collapsibility characteristics of wind-blown sand in thar desert,Pakistan[J]. Journal of Yangtze River Scientific Research Institute,2021,38(5):131 − 136. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20200202 YAO Chenhui, XIA Yuyun, WU Xuelin, et al. Collapsibility characteristics of wind-blown sand in thar desert, Pakistan[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 131 − 136. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20200202
[18] 柳旻,姚晨辉,张国敬,等. 强夯法处理湿陷性风积砂土地基评价[J]. 水利与建筑工程学报,2020,18(3):31 − 35. [LIU Min,YAO Chenhui,ZHANG Guojing,et al. Evaluation of collapsible wind-blown sand subgrade treated by dynamic compaction[J]. Journal of Water Resources and Architectural Engineering,2020,18(3):31 − 35. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-1144.2020.03.006 LIU Min, YAO Chenhui, ZHANG Guojing, et al. Evaluation of collapsible wind-blown sand subgrade treated by dynamic compaction[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(3): 31 − 35. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2020.03.006
[19] 朱凤基,南静静,魏颖琪,等. 黄土湿陷系数影响因素的相关性分析[J]. 中国地质灾害与防治学报,2019,30(2):128 − 133. [ZHU Fengji,NAN Jingjing,WEI Yingqi,et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):128 − 133. (in Chinese with English abstract)] ZHU Fengji, NAN Jingjing, WEI Yingqi, et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 128 − 133. (in Chinese with English abstract)
[20] 周健,池永. 砂土力学性质的细观模拟[J]. 岩土力学,2003,24(6):901 − 906. [ZHOU Jian,CHI Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics,2003,24(6):901 − 906. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2003.06.006 ZHOU Jian, CHI Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics, 2003, 24(6): 901 − 906. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2003.06.006
[21] ZHAO Xueliang,EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter,2011,13(6):751 − 764. DOI: 10.1007/s10035-011-0284-1
[22] ROBERTSON D,BOLTON M D. DEM simulations of crushable grains and soils[J]. In:4th International Conference on Micromechanics of Granular Media Powders and Grains,2001-5-21 to 2001-5-25,Sendai,Japan:623 − 626.
[23] 罗勇,龚晓南,连峰. 三维离散颗粒单元模拟无黏性土的工程力学性质[J]. 岩土工程学报,2008,30(2):292 − 297. [LUO Yong,GONG Xiaonan,LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering,2008,30(2):292 − 297. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2008.02.024 LUO Yong, GONG Xiaonan, LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 292 − 297. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2008.02.024
[24] 吴越. 砂土力学特性及临界破坏三维离散元数值模拟[D]. 杭州:浙江大学,2015. [WU Yue. Three dimensional discrete element simulations of mechanical behavior and critical state failure of granular media[D]. Hangzhou:Zhejiang University,2015. (in Chinese with English abstract)] WU Yue. Three dimensional discrete element simulations of mechanical behavior and critical state failure of granular media[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
[25] THORNTON C,ANTONY S J. Quasi-static shear deformation of a soft particle system[J]. Powder Technology,2000,109(1/2/3):179 − 191.
[26] 曾远. 土体破坏细观机理及颗粒流数值模拟[D]. 上海:同济大学,2006. [ZENG Yuan. Microscopic mechanics of soil failure and PFC numerical simulation[D]. Shanghai:Tongji University,2006. (in Chinese with English abstract)] ZENG Yuan. Microscopic mechanics of soil failure and PFC numerical simulation[D]. Shanghai: Tongji University, 2006. (in Chinese with English abstract)
[27] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[28] 中华人民共和国建设部. 湿陷性黄土地区建筑规范:GB 50025—2004[S]. 北京:中国建筑工业出版社,2004. [Ministry of Construction of the People’s Republic of China. Code for building construction in collapsible loess regions:GB 50025—2004[S]. Beijing:China Architecture & Building Press,2004. (in Chinese)] Ministry of Construction of the People’s Republic of China. Code for building construction in collapsible loess regions: GB 50025—2004[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
[29] 韩振华,张路青,周剑,等. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J]. 工程地质学报,2021,29(6):1733 − 1743. [HAN Zhenhua,ZHANG Luqing,ZHOU Jian,et al. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J]. Journal of Engineering Geology,2021,29(6):1733 − 1743. (in Chinese with English abstract)] HAN Zhenhua, ZHANG Luqing, ZHOU Jian, et al. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J]. Journal of Engineering Geology, 2021, 29(6): 1733 − 1743. (in Chinese with English abstract)
[30] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报,2019,41(2):195 − 254. [JIANG Mingjing. New paradigm for modern soil mechanics:Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):195 − 254. (in Chinese with English abstract)] DOI: 10.11779/CJGE201902001 JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195 − 254. (in Chinese with English abstract) DOI: 10.11779/CJGE201902001
[31] ITASCA CONSULTING GROUP,INC. The manuals of particle flow code in 3-dimension. Version 3.1. Minneapolis,2004.
[32] 王杰,庄建琦,孔嘉旭,等. 基于DEM模拟的破碎对黄土滑坡动力学特征影响研究[J]. 工程地质学报,2023,31(2):502 − 513. [WANG Jie,ZHUANG Jianqi,KONG Jiaxu,et al. Influence of fragmentation on dynamic characteristics of loess landslide based on DEM simulation[J]. Journal of Engineering Geology,2023,31(2):502 − 513. (in Chinese with English abstract)] WANG Jie, ZHUANG Jianqi, KONG Jiaxu, et al. Influence of fragmentation on dynamic characteristics of loess landslide based on DEM simulation[J]. Journal of Engineering Geology, 2023, 31(2): 502 − 513. (in Chinese with English abstract)
[33] 刘宁,刘杰. 国内外标准中砂性土内摩擦角确定方法对比[J]. 水运工程,2021(1):42 − 47. [LIU Ning,LIU Jie. Comparison of methods for determining internal friction angle of sand by domestic and foreign standards[J]. Port & Waterway Engineering,2021(1):42 − 47. (in Chinese with English abstract)] LIU Ning, LIU Jie. Comparison of methods for determining internal friction angle of sand by domestic and foreign standards[J]. Port & Waterway Engineering, 2021(1): 42 − 47. (in Chinese with English abstract)
[34] 尹成薇,梁冰,姜利国. 基于颗粒流方法的砂土宏-细观参数关系分析[J]. 煤炭学报,2011,36(增刊2):264 − 267. [YIN Chengwei,LIANG Bing,JIANG Liguo. Analysis of relationship between macro-micro-parameters of sandy soil based on particle flow theory [J]. Journal of China Coal Society,2011,36(Sup 2):264 − 267. (in Chinese with English abstract)] YIN Chengwei, LIANG Bing, JIANG Liguo. Analysis of relationship between macro-micro-parameters of sandy soil based on particle flow theory [J]. Journal of China Coal Society, 2011, 36(Sup 2): 264 − 267. (in Chinese with English abstract)
[35] YANG Liu,WANG Deguo,GUO Yanbao,et al. Tribological behaviors of quartz sand particles for hydraulic fracturing[J]. Tribology International,2016,102:485 − 496. DOI: 10.1016/j.triboint.2016.06.017
[36] 陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2):107 − 114. [CHEN Jiale, NI Wankui, WANG Haiman, et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):107 − 114. (in Chinese with English abstract)] CHEN Jiale, NI Wankui, WANG Haiman, et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 107 − 114. (in Chinese with English abstract)
[37] 王韵,王红雨,李其星,等. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用[J]. 中国地质灾害与防治学报,2023,34(2):102 − 110. [WANG Yun, WANG Hongyu, LI Qixing, et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):102 − 110. (in Chinese with English abstract)] WANG Yun, WANG Hongyu, LI Qixing, et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 102 − 110. (in Chinese with English abstract)
[38] 李同录,冯文清,刘志伟,等. Q2黄土湿陷系数试验压力取值的讨论[J]. 水文地质工程地质,2023,50(6):59 − 68. [LI Tonglu, FENG Wenqing, LIU Zhiwei, et al. A discussion of the test pressure of collapsible coefficient for Q2 loess[J]. Hydrogeology & Engineering Geology,2023,50(6):59 − 68. (in Chinese with English abstract)] LI Tonglu, FENG Wenqing, LIU Zhiwei, et al. A discussion of the test pressure of collapsible coefficient for Q2 loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 59 − 68. (in Chinese with English abstract)
[39] 潘登丽,胡向阳,赵成,等. 砂井载荷浸水试验在深层黄土湿陷性评价中的应用[J]. 水文地质工程地质,2023,50(2):122 − 131. [PAN Dengli, HU Xiangyang, ZHAO Cheng, et al. Application of sand-well load immersion test to deep loess collapsibility evaluation[J]. Hydrogeology & Engineering Geology,2023,50(2):122 − 131. (in Chinese with English abstract)] PAN Dengli, HU Xiangyang, ZHAO Cheng, et al. Application of sand-well load immersion test to deep loess collapsibility evaluation[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 122 − 131. (in Chinese with English abstract)
[40] 钱法桥,邓亚虹,慕焕东,等. 吕梁山区黄土物理性质力学参数区域分布特征[J]. 中国地质灾害与防治学报,2022,33(2):61 − 70. [QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):61 − 70. (in Chinese with English abstract)] QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61 − 70. (in Chinese with English abstract)
[41] 乔峰, 薄景山, 常晁瑜, 等. 3种特殊土物理力学性质指标统计分析[J]. 吉林大学学报(地球科学版),2021,51(5):1356 − 1365. [QIAO Feng, BO Jingshan, CHANG Chaoyu, et al. Statistical analysis of physical and mechanical properties of three special soils[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1356 − 1365. (in Chinese with English abstract)] QIAO Feng, BO Jingshan, CHANG Chaoyu, et al. Statistical analysis of physical and mechanical properties of three special soils[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1356 − 1365. (in Chinese with English abstract)
[42] 李林翠,李喜安,洪勃,等. 不同埋深马兰黄土孔隙结构试验[J]. 吉林大学学报(地球科学版),2019,49(2):493 − 503. [LI Lincui, LI Xi’an, HONG Bo, et al. Experiment on pore structures of Malan loess at different buried depth[J]. Journal of Jilin University (Earth Science Edition),2019,49(2):493 − 503. (in Chinese with English abstract)] LI Lincui, LI Xi’an, HONG Bo, et al. Experiment on pore structures of Malan loess at different buried depth[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 493 − 503. (in Chinese with English abstract)