Risk amplification effect caused by main stream road bridges and culverts blockages due to debris flow
-
摘要:
2020年8月17日,四川省平武县亚者造祖村干流沿岸4条沟相继暴发泥石流,导致G247国道多处断道和垮方,九绵高速项目部及民工驻地等多处遭受巨大损毁,泥石流裹挟的大量漂木汇入干流后,引发下游公路桥涵堵塞并回水淹没村庄,放大了灾害风险。为了避免类似灾害再次发生,灾后基于野外调查和遥感解译等手段,探讨了此次泥石流灾害风险特征,并重点分析了干流公路桥涵堵塞对泥石流灾害的风险放大效应。结果表明:(1)亚者造祖村“8•17”泥石流为低频稀性大规模群发性泥石流,暴发频率约为50年一遇。阿祖沟和杂排沟泥石流在规模上属特大型,麻石扎三号沟和夺补河五号沟泥石流在规模上属大型,堆积扇受灾面积约为16.66×104 m2。(2)干流公路桥涵布设不当,导致泥石流裹挟的大量漂木堵塞桥涵,形成堰塞体,致使受灾面积增大了16.78×104 m2,风险范围扩大了约1倍。(3)对于植被覆盖良好的湿润山区,干流公路桥涵修建时应适当增大桥墩之间的轴向间距,给河道预留出一定的宽度和运行空间,避免因漂木堵塞放大泥石流灾害风险。研究可为类似山区干流公路桥涵合理规划及泥石流相关防治预警工作提供参考。
Abstract:On August 17, 2020, debris flows successively occurred in four ravines along the main stream of Yazhezaozu Village, Pingwu County, Sichuan Province. This event resulted in multiple collapses and interruptions along the G247 national highway, and extensive damage to the Jiumian expressway project site and laborer residences, among other areas. A significant volume of driftwood carried by the debris flow converged into the main stream, leading to the blockage of downstream road bridges and culverts, causing backflow and village flooding, thereby exacerbating the disaster risk. To prevent similar disasters in the future, post-disaster investigations using field surveys and remote sensing interpretations explored the characteristics of this debris flow disaster's risk. A primary focus was placed on analyzing the risk amplification effect caused by blockages in main stream road bridges and culverts due to debris flow. The results indicated: (1) The ‘8.17’ debris flow in Yazhezaozu Village was a low-frequency, large-scale, rare, and extensive group occurrence, with an eruption frequency of approximately once every 50 years. The debris flows in Azu Gully and Zapai Gully were extremely large-scale, while Mashizha No. 3 Gully and Duobu River No. 5 Gully were large-scale, with an affected debris fan area of about 16.66×104 square meters. (2) Improper layout of main stream road bridges and culverts resulted in the blockages of driftwood carried by the debris flow, forming dammed bodies, increasing the affected area by 16.78×104 square meters, and enlarging the risk range by about 1-fold. (3) In well-vegetated, moist mountainous areas, when constructing main stream road bridges and culverts, it is advisable to appropriately increase the axial spacing between bridge piers, allowing for a certain width and operational space in the river channel. This will prevent the amplification of debris flow disaster risks caused by driftwood blockages. This study aims to provide guidance for the reasonable planning of main stream road bridges and culverts in similar mountainous areas and relevant prevention and early warning of debris flows.
-
Keywords:
- debris flow /
- bridges and culverts /
- driftwood /
- blockage /
- risk
-
0. 引言
近年来,矿区地质灾害愈发严重,其中尾矿坝由于堆放工业废渣及废弃物,具有高势能,存在人造泥石流溃坝危险[1]。矿山环境污染是采矿活动引发的主要环境问题之一,基于尾矿坝严重的安全隐患,世界上很多国家把对尾矿坝的安全监测列为国家劳动部门安全监察的重要内容[2-4]。当险情发生时,由于灾区环境风险,常规的监测手段无法及时获取灾情。无人机同现有的常规手段相比,可以解决灾情勘察人员由于安全隐患无法接近灾区的问题,能够速获取空间要素,具有高精度、高时效、低成本的优势,是一种快速部署、零伤亡的灾情获取技术手段[5-9]。利用无人机遥感监测地面空间要素一直是学者们关注的热点。文献[10]进行了单相机无人机航摄试验,并开发了相应的地面监测软件;文献[11]对辽宁省某市铁矿开采区域进行了无人机动态遥感监测;文献[12]利用无人机摄影测量监测程潮铁矿西部塌陷区的地表塌陷变形。文献[13]利用无人机影像对云南省滇东北地区滑坡的活动性、发生发展过程进行监测,分析山体滑坡体特征。文献[14]以锦屏二级水电站出线场边坡落石灾害所在区域为例,将无人机摄影测量技术应用于高陡边坡危岩体调查中。随着无人机技术应用范围越来越广泛,这为尾库坝监测防灾及精细测量提供一种新思路。
采用无人机技术进行沉陷监测具有非接触性,大面积采集监测数据的优点。获取高精度的成图是无人机监测的保证。本文基于无人机低空摄影测量获取的航摄照片,经POS(Position and Orientation System)数据误差纠正,选取合理的像控点布设方案,利用获取的尾矿坝高分辨率两期DEM(Digital Elevation Model)数据进行尾矿坝沉降变形分析,对0~120 m,Y=0~700 m地表高程主要分析区域的变化情况做剖面分析,精度符合实际要求,为实际工况下无人机低空摄影测量提供参考,具有一定工程应用价值。
1. 无人机低空摄影成图方法
无人机低空摄影测量是对地面监测的一种新型手段。无人机采集地表信息的一般流程有航线规划、布设像控点和提取信息,它通过获取高清晰度航摄影片,获取POS数据,联系地面控制点,利用畸变改正等方法,经过空三解算,获取高精度DEM数据以及高分辨率正射影像[15-16]。无人机低空摄影测量获取的航片需要确定投影坐标以及DEM数据网格间距,精度越高则分辨率越高[17]。基于无人机低空摄影测量的尾矿坝地表沉降主要技术流程如图1所示。
2. 无人机航测影像POS数据系统误差分析
无人机低空摄影测量有一定的系统误差,对数字摄影测量精度造成影响的原因有很多种,但是最重要的是相机的分辨率;相机拍摄时存在的安置误差;原始POS数据系统误差[18]。通过设计合理的航飞方案可以提高影像质量,提高航片的重叠度减少误差,建立误差改正模型纠正原始POS数据系统误差。无人机飞行时的6个外方位元素
, , , , , 是由共线方程反算得到,这是摄影测量的一个基本问题[19-20]。共线方程的建立如式(1):(1) 式中:
, ——像主点; , ——以像主点为原点的像平面坐标; , ——相机畸变改正数; ——像片主距; , , ——外方位线元素; , , ——物点的地面坐标; , , , , , , , , ——旋转矩阵的9个元素。通过地面控制点反算获取影像精确的外方位元素,得到POS数据误差的改正参数,建立两种针对单张相片和多张相片的误差改正模型。其中单张相片误差改正公式如式(2):
(2) 式中:
, , , , , —原始POS数据的外方 位元素; , , , , , —地面控制点反算获取的外 方位元素;i—表示计算的影像张数,
; , , , , , —表示第i张影 像外方位元素 的改正值。如果选取多张相片进行误差改正,则误差取平均值计算多张相片误差改正公式如式(3):
(3) 通过改正模型纠正原始POS数据误差如表1所示。
表 1 外方位元素的改正值和误差来源Table 1. Correction values and error sources of elements with external orientation外方位元素 改正值 改正误差 奇数行带 相反性误差
偏移误差偶数行带 奇数行带 相反性误差
偏移误差偶数行带 偏移误差 视准轴误差 3. 实验区概况与控制点布置方案
3.1 实验区概况
本次实验区深处亚欧大陆腹地,地形地貌复杂,气候干旱少雨,绿洲生态维持主要依赖高山雨雪形成的河流。尾矿坝较多,属典型的山谷型尾矿库。其中研究区尾矿坝具有高势能的人造泥石流危险源,一旦溃坝容易造成特大事故和河流污染,对矿区的安全及其它方面也会产生一定影响。尾矿坝位于图2所示的研究范围内,尾矿坝用于存放工业废渣,而且在进行数据采集之前就已经出现过部分边坡的滑落。因此需要对尾矿坝进行无人机摄影测量监测,通过数据分析判断边坡是否再次出现滑坡灾害,以确保矿区地质安全[21-22]。
3.2 控制点布置方案
为获取实验区无人机影像,设计合理的飞行方案,分别在2018年8月2日及2019年8月5日采用固定翼和多旋翼无人机对实验区进行航拍,获取两期原始航片数据。为了保证生成具有高精度的DEM,飞行前在地面做好控制点并记录其大地坐标,将控制点清晰记录在影像上。无人机飞行参数设置相对航高为95 m,航向重叠度为85%,旁向重叠度为80%。在完成航摄后,应对照片进行质量检查,主要包括:照片的清晰度和重叠度,有没有航摄漏洞,航摄区域与需要观测区域的覆盖情况。如果在检查时发现有些照片不符合要求,进行补飞,以免影响后续处理的精度[23]。
控制点的选取和布设可以保证低空摄影测量的精度。做空中三角测量需要布设的地面控制点和检查点进行区域网平差[24]。采用高精度水准仪按照一等测量规范在实验区域架设仪器获取两期尾矿坝区域控制点高程数据,高精度全站仪获取控制点点位数据。实验区主要为尾矿坝区域,矿区两侧有山路环绕,便于行走及架设仪器。因此以尾矿坝为主要区域,然后沿矿区两侧山路在路边进行布设控制点。
针对控制点数量对成图的精度影响问题,在第一次航拍前实验选取最佳控制点数量提高成图精度。参考“均匀布设原则”,按照控制点依次增加2个,最后累加到14个的7种控制点布设方案。建模时,把用全站仪及水准仪测量的对应控制点坐标及高程输入到软件中,并且把纠正过的POS数据输入到Pix4Dmapper软件中,建立对应的三维立体模型。对生成的模型进行分析,读取不同控制点布设方案下各控制点的坐标,比较平面及高程精度。经过处理的7种控制点布设方案的数据误差如图3所示。
由图3可以看出,随着控制点数量的增加,数据精度也在逐渐增加,数量到达8个之后,精度逐渐降低并趋于稳定,所以此次尾矿坝控制点数量选取为8个,数据精度达到最高。
将原始外方位元素代入控制点坐标进行反算,利用Matlab软件设计系统误差改正模型计算出POS数据改正参数,然后对原始POS数据进行改正。选取第一期部分影像原始POS数据与纠正后POS数据对比如表2所示。
表 2 原始POS数据与纠正后POS数据对比Table 2. Comparison of original POS data and corrected POS dataID
/m
/m /m
/(°) /(°) /(°)D35 0.013 0.046 0.093 0.18 0.13 0.87 D36 0.056 0.099 0.034 0.20 0.43 0.50 D42 0.074 0.060 0.089 0.47 0.59 0.61 D43 0.025 0.054 0.051 0.78 0.78 0.84 D92 0.076 0.012 0.060 0.14 0.11 0.26 D93 0.047 0.083 0.081 0.28 0.25 0.55 由表2可以看出改正的外方位元素精度得到提高,生成的正射影像及DEM数据相对提高。此次获得的原始POS数据精度较高,经区域网平差后,线元素误差在0.1 m以内,角元素误差在1 °以内,但还是满足不了沉降观测高精度的要求,所以需要纠正POS数据提高精度。用Pix4Dmapper软件进行后续处理生成正射影像与DEM数据,投影坐标系为WGS84-UTM44N坐标系,第一期POS数据纠正前正射影像与纠正后正射影像对比如图4所示。两期控制点与DEM坐标点位误差如图5所示。
通过图4可知用纠正后POS数据生成第一期正射影像的定位精度高于原始POS数据。由于目前的无人机没有搭载后差分POS数据处理系统,因此要纠正POS数据进行影像定位,提高定位精度。由图5可知两期地面控制点和生成DEM数据的对应监测点坐标的差值在毫米级别,控制点的误差基本控制在3 mm之内,说明其生成的坐标精度可靠,可以用于接下来的尾矿坝地表沉陷分析。
4. 尾矿坝地表沉陷特征
对本次研究区域进行位移沉降分析,首先需要得到DEM数据的坐标信息,生成的2018年8月2日及2019年8月5日DEM数据整体差值如图6所示。根据Pix4Dmapper软件生成的三维尾矿坝图如图7所示。
将尾矿坝两期DEM数据整体差值覆于数字模型表面上,经过ArcGIS平台的技术处理[25],得到尾矿坝整体沉降图如图8所示。
对于尾矿坝整体的主要分析区域为0~120 m,Y=0~700 m地表高程的变化情况。为了分析研究区域地表塌陷区的沉降情况,对两期实验所得到的模型区域内,分别在Y=350 m、Y=100 m和X=60 m剖面线上,提取相应点的高程差值,分析其高程在三次监测情况下的变化,如图9、10、11所示。
由图8可知,尾矿坝整体出现了沉降,尾矿坝两侧山坡西坡受尾矿坝沉降及西南暖湿气流的影响,在南北或偏南北走向山脉的西坡和西南坡形成大量降水,出现沉降现象。由X=60 m剖面可知尾矿坝南坡沉降范围最大。由于尾矿坝内部存在矿区工业废水,经过一年的废水流失,以及该实验区降水量大,受日照及降雨影响,尾矿坝的地质发生了解构现象,导致了整体沉降。南部尾矿坝下坡是尾矿坝的坡顶区域,坡度大,降雨量受面广,受沉降位移的影响较为明显,加快了地表塌陷区的沉降。尾矿坝北部因为坡度小,受降雨及日照影响小,所以沉降范围小于南部。对于剖面Y=500 m,根据剖面线上各点高程的变化情况可知,此剖面线上沉降位移为0.08 m左右。分析其原因,主要是因为此剖面所处区域比较平坦,属于尾矿坝中部地区,沉降比较稳定。对于剖面Y=100 m,尾矿坝下坡沉降范围在0.16 m之内。
综上所述,当前利用无人机低空摄影测量技术为监测地表沉降提供了新的方法,比传统监测方式更加便捷。与传统监测相比,低空摄影测量技术能够从多角度进行影像采集,能够充分地获取监测区域的地形地物信息。
5. 结论
文章基于无人机低空航摄技术获取实验区数据,并进行数据处理,利用高精度成图方法,得到实验区尾矿坝地表沉陷图。实验结果表明:
(1)通过改正原始POS数据误差,是可以提高无人机摄影测量成图精度的,这为无人机在精细测量方向上有更多的研究潜力。无人机成图精度并不是随着像控点数量的增加而增加,要根据实际情况做出决策。
(2)经过实际工程的应用,利用无人机监测尾矿坝地表沉陷的高精度成图方法获得的精度是可靠的,可以达到毫米级,这对现有监测手段是一种有效的补充。
(3)尾库坝安全监测一直是矿区安全生产的重要保证。由于光照、温度、雨量、风速和土壤质地等因子的综合作用,尾矿坝发生沉降,尾矿坝北部因为坡度小,受降雨及日照影响小,所以沉降范围小于南部。通过无人机低空摄影测量监测,对矿区安全生产起到一定的预警作用。需要指出的是,本次试验研究的是植被覆盖较少的尾矿坝区域,沉降变形主要靠人工识别和分析,下一步的研究工作将针对植被覆盖广的区域以及对矿区地质灾害信息进行自动识别和统计分析。
-
表 1 研究区4条泥石流沟地形地貌特征参数
Table 1 Topographic and geomorphologic characteristics parametes of four debris flow gullies in the study area
流域名称 流域面积
/km2主沟长度
/km平均纵
比降/‰最高海拔
/m最低海拔
/m最大高差
/m阿祖沟 4.10 3.10 244 3110 2353 757 麻石扎三号沟 2.43 3.20 294 3302 2361 941 夺补河五号沟 1.80 2.54 311 3147 2357 791 杂排沟 6.16 5.45 223 3543 2330 1213 表 2 研究区4条泥石流沟雨洪法相关参数计算结果
Table 2 Calculation results of storm flood method related parameters in four debris flow gullies in the study area
流域 P/% /h /(mm·h−1) /(m3·s−1) /(m3·s−1) /(104 m3) /(104 m3)阿祖沟 1 0.91 0.97 0.8 59.20 2.8 63.26 302.82 19.19 7.91 2 0.90 1.01 0.8 51.60 2.6 52.35 232.71 14.74 6.08 5 0.87 1.08 0.79 42.00 2.4 39.16 160.70 10.18 4.20 麻石扎三号沟 1 0.94 1.07 0.8 59.20 2.8 35.57 174.58 8.30 3.57 2 0.93 1.12 0.8 51.60 2.6 29.61 134.97 6.41 2.76 5 0.91 1.19 0.79 42.00 2.4 22.41 94.27 4.48 1.93 夺补河五号沟 1 0.94 0.90 0.8 59.20 2.8 30.42 140.24 6.66 2.63 2 0.93 0.94 0.8 51.60 2.6 25.33 108.46 5.15 2.03 5 0.92 1.00 0.79 42.00 2.4 19.19 75.84 3.60 1.42 杂排沟 1 0.93 1.58 0.8 59.20 2.8 65.48 282.62 17.91 6.30 2 0.92 1.65 0.8 51.60 2.6 54.50 218.44 13.84 4.87 5 0.90 1.76 0.79 42.00 2.4 41.17 152.30 9.65 3.39 注: 为洪峰径流系数, 为流域汇流时间,s为暴雨雨力。表 3 研究区4条泥石流沟形态调查法相关参数计算结果
Table 3 Calculation results of morphological survey method related parameters in four debris flow gullies in the study area
流域 /% /(g·cm−3) /m /m2 /(m·s−1) /(m3·s−1) /(104 m3) /(104 m3)阿祖沟 1.15 1.68 2.0 41.00 8.40 344.39 16.37 6.79 麻石扎三号沟 1.37 1.71 2.2 16.28 9.64 156.86 7.45 3.20 夺补河五号沟 0.82 1.65 1.7 13.86 8.77 121.47 5.77 2.27 杂排沟 0.52 1.61 2.0 21.76 8.51 185.18 11.73 4.12 注:R为水力半径。 表 4 研究区4条泥石流沟堆积扇特征及危害对象
Table 4 Characteristics and vulnerable objects of accumulation fans in four debris flow gullies in the study area
流域 堆积扇面积/(104 m2) 平均堆积厚度/m 堆积体积/(104 m3) 主要危害对象 阿祖沟 5.95 2.5 14.88 九绵高速项目部驻地、民工驻地、钢筋加工中心 麻石扎三号沟 3.14 1.5 4.72 G247国道 夺补河五号沟 3.43 1.3 4.45 九绵高速预制梁场、拌合站、白马隧道洞口驻地 杂排沟 4.14 2.3 9.52 G247国道、在建九绵高速、沟口民宿 表 5 泥石流堵河相关参数与计算结果
Table 5 Related parameters and calculation results of debris flow blocking river
流域 /(m3·s−1) /(g·cm−3) /(m·s−1) /(°)J/‰ 堵河情况 阿祖沟 232.71 1.68 8.40 60 244 1.19 不堵 麻石扎三号沟 134.97 1.71 9.64 120 294 0.81 不堵 夺补河五号沟 108.46 1.65 8.77 80 311 0.65 不堵 杂排沟 218.44 1.61 8.51 120 223 1.09 不堵 -
[1] 陈宁生,周海波,卢阳,等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版),2013,40(1):50 − 58. [CHEN Ningsheng,ZHOU Haibo,LU Yang,et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(1):50 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2013.01.008 CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(1): 50 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2013.01.008
[2] 赵聪,梁京涛,铁永波,等. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究[J]. 中国地质灾害与防治学报,2024,35(4):45 − 55. [ZHAO Cong,LIANG Jingtao,TIE Yongbo,et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):45 − 55. (in Chinese with English abstract)] ZHAO Cong, LIANG Jingtao, TIE Yongbo, et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 45 − 55. (in Chinese with English abstract)
[3] 史继帅, 姜亮, 翟胜强. 四川甘洛县黑西洛沟 “8•31” 泥石流动力过程[J]. 中国地质灾害与防治学报,2024,35(3):52 − 60. [SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):52 − 60. (in Chinese with English abstract)] SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 52 − 60. (in Chinese with English abstract)
[4] 谢湘平,王小军,李忠丽,等. 漂木对泥石流输移过程影响试验研究[J]. 水利水电技术(中英文),2022,53(5):179 − 189. [XIE Xiangping,WANG Xiaojun,LI Zhongli,et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering,2022,53(5):179 − 189. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, LI Zhongli, et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering, 2022, 53(5): 179 − 189. (in Chinese with English abstract)
[5] 于国强,张霞,顾小凡,等.基底侵蚀作用对黄土坡面泥流动力过程影响机制研究[J/OL].中国地质,(2024-07-05)[2024-07-28]. [YU Guoqiang,ZHANG Xia,GU Xiaofan,et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China,(2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)] YU Guoqiang, ZHANG Xia, GU Xiaofan, et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China, (2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)
[6] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)] LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)
[7] 张宪政,铁永波,宁志杰, 等. 四川汶川县板子沟 “6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)] ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)
[8] 陈剑刚,费高高,王喜安,等. 漂木对山洪泥石流运动致灾影响研究进展[J]. 水利水电科技进展,2022,42(3):104 − 111. [CHEN Jiangang,FEI Gaogao,WANG Xi’an,et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources,2022,42(3):104 − 111. (in Chinese with English abstract)] CHEN Jiangang, FEI Gaogao, WANG Xi’an, et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources, 2022, 42(3): 104 − 111. (in Chinese with English abstract)
[9] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)] YUAN Dong, ZHANG Guangze, WANG Dong, et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract)
[10] CHEN Jiangang,LIU Wenrun,ZHAO Wanyu,et al. Magnitude amplification of flash floods caused by large woody in Keze gully in Jiuzhaigou National Park,China[J]. Geomatics,Natural Hazards and Risk,2021,12(1):2277 − 2299. DOI: 10.1080/19475705.2021.1961882
[11] 陈晓清,崔鹏,韦方强. 良好植被区泥石流防治初探[J]. 山地学报,2006,24(3):333 − 339. [CHEN Xiaoqing,CUI Peng,WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science,2006,24(3):333 − 339. (in Chinese with English abstract)] CHEN Xiaoqing, CUI Peng, WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science, 2006, 24(3): 333 − 339. (in Chinese with English abstract)
[12] 崔鹏,陈晓清,柳素清,等. 风景区泥石流防治特点与技术[J]. 地学前缘,2007,14(6):172 − 180. [CUI Peng,CHEN Xiaoqing,LIU Suqing,et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers,2007,14(6):172 − 180. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60009-3 CUI Peng, CHEN Xiaoqing, LIU Suqing, et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers, 2007, 14(6): 172 − 180. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60009-3
[13] 高克昌,孟国才,韦方强,等. 德宏“7•5” 特大滑坡泥石流灾害分析及其对策[J]. 防灾减灾工程学报,2005,25(3):251 − 257. [GAO Kechang,MENG Guocai,WEI Fangqiang,et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong,Yunnan,China[J]. Journal of Disaster Pnevention and Mitigation Engineering,2005,25(3):251 − 257. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-2132.2005.03.004 GAO Kechang, MENG Guocai, WEI Fangqiang, et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong, Yunnan, China[J]. Journal of Disaster Pnevention and Mitigation Engineering, 2005, 25(3): 251 − 257. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-2132.2005.03.004
[14] 谢湘平,王小军,闫春岭. 漂木灾害研究现状及研究展望[J]. 山地学报,2020,38(4):552 − 560. [XIE Xiangping,WANG Xiaojun,YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research,2020,38(4):552 − 560. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research, 2020, 38(4): 552 − 560. (in Chinese with English abstract)
[15] 黄勋,唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展,2016,31(10):1047 − 1055. [HUANG Xun,TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science,2016,31(10):1047 − 1055. (in Chinese with English abstract)] HUANG Xun, TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1047 − 1055. (in Chinese with English abstract)
[16] 杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)] YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70 − 79. (in Chinese with English abstract)
[17] 屈永平,唐川,刘洋,等. 四川省都江堰市龙池地区“8•13” 泥石流堆积扇调查和分析[J]. 水利学报,2015,46(2):197 − 207. [QU Yongping,TANG Chuan,LIU Yang,et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City,Sichuan Province[J]. Journal of Hydraulic Engineering,2015,46(2):197 − 207. (in Chinese with English abstract)] QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City, Sichuan Province[J]. Journal of Hydraulic Engineering, 2015, 46(2): 197 − 207. (in Chinese with English abstract)
[18] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing:A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)] JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)
[19] 陈宁生,田树峰,张勇,等. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘,2021,28(4):337 − 348. [CHEN Ningsheng,TIAN Shufeng,ZHANG Yong,et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers,2021,28(4):337 − 348. (in Chinese with English abstract)] CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers, 2021, 28(4): 337 − 348. (in Chinese with English abstract)
[20] 游勇,陈兴长,柳金峰. 四川绵竹清平乡文家沟“8•13” 特大泥石流灾害[J]. 灾害学,2011,26(4):68 − 72. [YOU Yong,CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township,Mianzhu,Sichuan Province[J]. Journal of Catastrophology,2011,26(4):68 − 72. (in Chinese with English abstract)] YOU Yong, CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township, Mianzhu, Sichuan Province[J]. Journal of Catastrophology, 2011, 26(4): 68 − 72. (in Chinese with English abstract)
[21] OKAMOTO T,TAKEBAYASHI H,SANJOU M,et al. Log jam formation at bridges and the effect on floodplain flow:A flume experiment[J]. Journal of Flood Risk Management,2020,13(S1).
[22] WANG Daozheng,WANG Xingang,CHEN Xiaoqing,et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology,2022,398:108054. DOI: 10.1016/j.geomorph.2021.108054
[23] CHEN Huayong,RUAN Hechun,CHEN Jiangang,et al. Review of investigations on hazard chains triggered by river-blocking debris flows and dam-break floods[J]. Frontiers in Earth Science,2022,10:830044. DOI: 10.3389/feart.2022.830044
[24] 郭岐山,肖建兵,关新芳. 平武县石坎河小流域震后泥石流活动特征及工程防治建议[J]. 中国地质灾害与防治学报,2018,29(3):31 − 37. [GUO Qishan,XIAO Jianbing,GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin,Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):31 − 37. (in Chinese with English abstract)] GUO Qishan, XIAO Jianbing, GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin, Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 31 − 37. (in Chinese with English abstract)
[25] 钟燕川,郭海燕,徐金霞,等. 四川省泥石流活动与降水因子特征[J]. 水土保持研究,2018,25(6):390 − 396. [ZHONG Yanchuan,GUO Haiyan,XU Jinxia,et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation,2018,25(6):390 − 396. (in Chinese with English abstract)] ZHONG Yanchuan, GUO Haiyan, XU Jinxia, et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation, 2018, 25(6): 390 − 396. (in Chinese with English abstract)
[26] 陈宁生,崔鹏,刘中港,等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑:技术科学,2003,33(增刊1):164 − 174. [CHEN Ningsheng,CUI Peng,LIU Zhonggang,et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica),2003,33(Sup 1):164 − 174. (in Chinese)] CHEN Ningsheng, CUI Peng, LIU Zhonggang, et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 164 − 174. (in Chinese)
[27] 中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范(试行):T/CAGHP 006—2018[S]. 武汉:中国地质大学出版社,2018. [China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)] China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)
[28] 陈德明,王兆印,何耘. 泥石流入汇对河流影响的实验研究[J]. 泥沙研究,2002(3):22 − 28. [CHEN Deming,WANG Zhaoyin,HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research,2002(3):22 − 28. (in Chinese with English abstract)] CHEN Deming, WANG Zhaoyin, HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research, 2002(3): 22 − 28. (in Chinese with English abstract)
[29] SCHMOCKER L,HAGER W H. Probability of drift blockage at bridge decks[J]. Journal of Hydraulic Engineering,2011,137(4):470 − 479. DOI: 10.1061/(ASCE)HY.1943-7900.0000319
[30] RUIZ-VILLANUEVA V,WYŻGA B,MIKUŚ P,et al. Large wood clogging during floods in a gravel-bed river:The Długopole bridge in the Czarny Dunajec River,Poland[J]. Earth Surface Processes and Landforms,2017,42(3):516 − 530. DOI: 10.1002/esp.4091
[31] RUIZ-VILLANUEVA V,BADOUX A,RICKENMANN D,et al. Impacts of a large flood along a mountain river basin:The importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland)[J]. Earth Surface Dynamics,2018,6(4):1115 − 1137. DOI: 10.5194/esurf-6-1115-2018
[32] DE CICCO P N,PARIS E,SOLARI L,et al. Bridge pier shape influence on wood accumulation:Outcomes from flume experiments and numerical modelling[J]. Journal of Flood Risk Management,2020,13(2).
[33] COMITI F,LUCÍA A,RICKENMANN D. Large wood recruitment and transport during large floods:A review[J]. Geomorphology,2016,269:23 − 39. DOI: 10.1016/j.geomorph.2016.06.016
[34] 谢湘平,韦方强,谢涛,等. 山洪中漂木在拦砂坝前堵塞堆积实验[J]. 山地学报,2014,32(2):249 − 254. [XIE Xiangping,WEI Fangqiang,XIE Tao,et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research,2014,32(2):249 − 254. (in Chinese with English abstract)] XIE Xiangping, WEI Fangqiang, XIE Tao, et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research, 2014, 32(2): 249 − 254. (in Chinese with English abstract)
[35] 谢湘平,王小军,屈新,等. 缝隙坝对携带漂木的泥石流减灾效果实验研究[J]. 工程地质学报,2020,28(6):1300 − 1310. [XIE Xiangping,WANG Xiaojun,QU Xin,et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology,2020,28(6):1300 − 1310. (in Chinese with English abstract)] XIE Xiangping, WANG Xiaojun, QU Xin, et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology, 2020, 28(6): 1300 − 1310. (in Chinese with English abstract)
-
期刊类型引用(1)
1. 曾浩楠,何沛建,冯侠,贺华芹,廖茂. 泥石流冲击桥梁结构研究综述. 公路交通技术. 2024(06): 30-41 . 百度学术
其他类型引用(0)