ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

黄土地震滑坡研究综述与展望

钱法桥, 邓亚虹, 刘凡, 门欢

钱法桥,邓亚虹,刘凡,等. 黄土地震滑坡研究综述与展望[J]. 中国地质灾害与防治学报,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
引用本文: 钱法桥,邓亚虹,刘凡,等. 黄土地震滑坡研究综述与展望[J]. 中国地质灾害与防治学报,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
QIAN Faqiao,DENG Yahong,LIU Fan,et al. A review of earthquake-induced loess landslides research and future prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
Citation: QIAN Faqiao,DENG Yahong,LIU Fan,et al. A review of earthquake-induced loess landslides research and future prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020

黄土地震滑坡研究综述与展望

基金项目: 国家自然科学基金项目(41772275)
详细信息
    作者简介:

    钱法桥(1997—),男,重庆云阳人,博士研究生,主要从事地质灾害及地震工程方面的研究。E-mail:2020226080@chd.edu.cn

    通讯作者:

    邓亚虹(1978—),男,湖南安化人,教授,博士,主要从事土动力学及地震工程方面的研究。E-mail:dgdyh@chd.edu.cn

  • 中图分类号: P642.22

A review of earthquake-induced loess landslides research and future prospects

Funds: National Natural Science Foundation of China(41772275)
  • 摘要:

    黄土地区地貌形态复杂,地震频发,地震滑坡灾害严重。黄土地震滑坡受多种因素影响,包括黄土边坡地形地貌、地层岩性、动力响应,黄土强度和动力特性,水文地质条件等。目前,黄土地震滑坡研究主要采用室内试验、物理与数值模型试验、野外调研、遥感与监测等手段,研究内容包括黄土地震滑坡成因机理、发育特征与分布、滑坡动力响应和稳定性等方面。文章阐述了黄土地震滑坡国内外研究现状,介绍了一种考虑地震波动特性的拟动力评价方法,并对基于拟动力法开展黄土地震滑坡研究进行了展望。通过分析黄土地震滑坡力学成因机制、研究黄土滑坡地震液化现象、讨论黄土地震滑坡失稳特征,提出能够精确评价黄土地震滑坡稳定性的计算方法,可以为黄土地区防震减灾提供理论依据,也是今后研究的重点。

    Abstract:

    The loess region is characterized by complex geomorphological patterns. This region is prone to frequent earthquakes with serious seismic landslide disasters. Loess seismic landslides are affected by a variety of factors, including the topography and geomorphology of loess slopes, stratigraphic lithology, dynamic responses, strength and dynamic characteristics of loess, and hydrogeological conditions. Current research on loess seismic landslides primarily involves laboratory experiments, physical and numerical simulations, field investigations, and remote sensing and monitoring techniques. The research focuses on the mechanisms, development characteristics, distribution, dynamic responses, and stability of loess seismic landslides. This paper reviews the current state of both domestic and international research on loess seismic landslides, introduces the pseudo-dynamic method that considers seismic wave propagation characteristics, and outlines future research prospects based on this method. By analyzing the mechanics mechanisms of loess seismic landslide, investigating the seismic liquefaction phenomena of loess landslides, and discussing the instability characteristics of these landslides, this study proposes a calculation method to accurately evaluate the stability of loess seismic landslides. This research can provide a theoretical basis for earthquake disaster prevention and mitigation in loess areas, and it represents a key focus for future studies.

  • 堵塞效应在泥石流运动过程中是一种常见的现象,当泥石流流量不足以克服其阻力运动时,只有通过流量的积累以克服阻力,便产生了泥石流堵溃效应[1]。主支沟交汇[2-3],沟道地形突变[4-6]以及沟道内的崩滑堆积体[7-9]均可使泥石流在局部产生堵溃效应,其宏观表现形式为沟道短暂断流与阵流现象[10-12]。汶川地震以后,由于沟道内大量崩滑体堵塞沟道,沟道断面束窄形成局部卡口地貌,泥石流的堵溃效应加显著,泥石流的堵塞系数相比震前显著增大[13],泥石流堵塞系数取值范围由1~2.5 增大到2.0~5.5[14],在计算泥石流防治工程设计流量时,胡卸文等[15]建议堵塞系数取值至少取值1.5,最大值可达4.0以上。崔鹏等[16]把震后泥石流堵塞系数普遍提高的主要原因归结于沟道微地貌的突变,主沟串珠状崩滑堰塞体级联溃决以及沟道束窄形成的卡口效应是导致泥石流发生堵溃效应和规模放大的核心因素[17]。另外,是否有支沟泥石流汇入或卡口处巨石堵塞也是泥石流规模放大的关键因素[18-19]。近几年以来,部分学者开始对堵溃效应及其产生的流量放大效应进行研究[20-21],从冲刷系数、泥石流流量与流速、地形突变段长度以及泥石流级配对泥石流堵溃效应的影响等方面开展了理论探讨和试验研究。

    天然泥石流沟道为一系列弯道与顺直段,宽窄相同的地貌组合,尤其在构造活动强烈,岩性软硬相间的地质条件下,更有利于卡口这种微地貌的形成。宽窄组合的卡口地形特征,更易引发泥石流的局部堵塞与溃决现象,从而产生泥石流流量放大效应[22-25],泥石流造成的危害也更加严重。泥石流堵塞系数是表征泥石流堵溃效应的特征参数,也是泥石流防治工程勘察设计规范中配方法计算泥石流流量的关键参数。现行规范中往往以卡口的多少作为泥石流堵塞程度的判定依据,具有明显的经验性,未考虑泥石流体性质、泥石流的运动特征以及卡口微地貌形态对卡口堵溃效应和堵塞系数的影响,导致泥石流流量计算存在较大的不确定性,从而影响泥石流防治工程的效果与运行安全。

    文中尝试通过模型试验的方法,探索不同卡口地形和泥石流特征条件下,泥石流发生堵溃的临界条件,分析卡口段泥石流流量的放大效应,对于完善泥石流防灾减灾技术规程,提高对泥石流运动堆积过程的认知,具有重要的理论意义和应用前景。

    什邡市位于四川盆地边缘及边缘山区,属亚热带湿润季风气候,区内气候随地势变化差别较大。总体特征是天气温湿、雨量充沛、四季分明。夏季多暴雨;秋季气温降幅大,多连绵阴雨;冬季长,气温低日照少,常有低温、冰雹等自然灾害发生。

    根据什邡市气象站多年观测资料,区内多年平均气温13.6 °C。年最冷为1月,平均气温3.7 °C,极端最低气温−8 °C(1984年);最热为7—8月,平均气温23 °C,极端最高气温35.5 °C(1996年)。多年平均月最大降水量为254.36 mm,多年平均月最小降水量4.49 mm(表1),年均总降水量938.9 mm。每年降雨多集中在5—8月,占全年降水量的76%。降雨分配极度不均匀,局部地段暴雨频繁,且随地势增高,降雨量明显增加,山区降雨和平原区形成较大差异。

    表  1  什邡市多年平均月降水量统计表(1971—2002年)
    Table  1.  Statistical table of annual average monthly precipitation in Shifang City (1971—2002)
    月份 l 2 3 4 5 6 7 8 9 10 11 12
    降水量/mm 11.85 20.34 44.58 75.81 114.67 254.36 202.44 141.69 36.31 15.77 4.49 11.85
    下载: 导出CSV 
    | 显示表格

    根据《四川省中小流域暴雨洪水计算手册》所附暴雨量等值线图,什邡市红白镇地区的1/6 h、1 h、24 h多年最大暴雨量平均值分别为8.3 mm、20 mm、60 mm,变异系数分别为0.51、0.35、0.48, 查皮尔逊Ⅲ型曲线得到不同频率下模比系数并求得不同频率下的雨强值统计见表2

    表  2  研究区不同频率下雨强值计算表
    Table  2.  Calculation table of rain intensity values at different frequencies in the study area
    频率/% 10 min雨强 1 h雨强 6 h雨强 24 h雨强
    平均值
    /mm
    变异
    系数
    模比
    系数
    设计雨强
    /mm
    平均值
    /mm
    变异
    系数
    模比
    系数
    设计雨强
    /mm
    平均值
    /mm
    变异
    系数
    模比
    系数
    设计雨强
    /mm
    平均值
    /mm
    变异
    系数
    模比
    系数
    设计雨强
    /mm
    1 12.5 0.4 2.31 28.88 45 0.35 2.11 94.95 100 0.5 2.74 274.00 160 0.58 3.1 496.00
    2 2.08 26.00 1.92 86.40 2.42 242.00 2.69 430.40
    5 1.78 22.25 1.67 75.15 1.99 199.00 2.16 345.60
    10 1.53 19.13 1.47 66.15 1.66 166.00 1.75 280.00
    下载: 导出CSV 
    | 显示表格

    四川山区泥石流激发雨量一般为一次雨量48~50 mm或10 min雨量8~12.2 mm。由于地震后,桦头尖沟内不良地质现象发育,松散物源量大增,其激发雨量还可能更低。桦头尖沟区域内降雨较丰沛,且雨量集中,其雨强完全可以满足激发泥石流的条件,暴雨是该泥石流的主要引发因素。

    桦头尖沟为常年流水溪沟,主要接受大气降水补给,流量受降水量控制,冬春季节有融雪补给,但融雪补给水量较少,泥石流均为雨季暴发,融雪不构成泥石流主要水源。

    桦头尖沟流域属深切割构造侵蚀低山和中山地形,“V”型谷,沟谷平面上较为顺直,沟道总体比较狭窄,一般在5~10 m,出山口后沟道有所展宽,在10~20 m。主沟长1.6 km,流域内最高点高程为1720 m,沟口与唐家河交汇处高程为1096 m,相对高差624 m,主沟平均纵坡降392.3‰,其中上游沟道陡峻,切割深度较大,平均纵坡400‰以上,下游沟段纵坡略缓,平均纵坡190‰~310‰。地形陡峻,地形临空条件发育,为流域内崩塌、滑坡等不良地质现象的发育,以及为泥石流松散固体物源的汇集提供了有利条件。特别是在5.12地震后,沟内新产生了大量的崩滑等不良地质体,为泥石流的发育提供了大量松散固体物源。

    沟道上游,沟谷较为狭窄,纵坡较陡,水流湍急,且动态变化较大,具陡涨陡落的山溪沟谷特征。森林植被在地震中遭到严重破坏,覆盖率有所降低,地震中不良地质现象极其严重,松散堆积层覆盖较厚,主要为基岩斜坡崩塌堆积物,可参与泥石流活动的松散物源量相对较多。

    沟道中游,两侧岸坡陡峻,为砂岩、粉砂岩泥岩互层,岸坡坡度一般50°~60°,局部沟道直立甚至反角;沟内发育多处陡坎和深潭,沟床基岩出露,沟床粗糙,沟内有巨石和携带的树木堆积以及茂密的灌丛,植被覆盖较好;崩滑不良地质体较为发育,主要为第四系残坡积滑坡及坡面侵蚀堆积物;沟道堆积物主要为巨大漂石,大部分沟床基岩裸露;崩滑体发育处沟道堵塞严重,堆积物厚1~3 m。

    沟道下游,为泥石流和冲洪积堆积扇形地,形状比较规则,保存较好。堆积扇前缘有唐家河通过,沟口距唐家河高差约为20 m。

    试验水槽装置主要由三部分组成:泥石流供料箱、试验水槽及集水池(图1)。

    图  1  试验装置图
    Figure  1.  Graph of the test apparatus

    供料箱:位于顶部,为横截 边长50 cm的正方形,高80 cm,供料箱上部设置最大开度20 cm的闸门与试验水槽相接,下部焊接锥形漏斗,最大供料体积150 L。每次试验时,记录供料箱内物料的高度,从而计算出泥石流的流量过程。

    试验水槽:位于中部,为双面钢化玻璃水槽,长4.5 m,横截面高40 cm,宽30 cm,纵坡可通过龙门架在6°~12°之间调节,水槽卡口部位两侧贴透明网格纸,通过高速摄像机记录泥石流的运动参数。

    集水池:位于尾部,为长80 cm、宽80 cm、高60 cm的砖砌水池,用以收集泥石流堆积体。

    供料箱及集水池通过水位传感器记录水位变化,并通过体积法分别计算入口和出口处泥石流的流量,其中Qe/(L·s−1)为入口流量,Q/(L·s−1)为出口流量。

    卡口模型采用混凝土制作,并使用模具制作成不同的形态,在试验中共制作了3中不同形态的卡口,即V形卡口、矩形卡口和梯形卡口,并通过卡口宽度(w)和倾角(α)控制卡口的大小,卡口以水槽中轴线对称布置于水槽出口处上游1/3处。

    泥石流试样模型砂的配制主要参考桦头尖2011年4种不同泥石流堆积物的级配特征,并按照1∶100的几何相似性比尺进行缩放;考虑到颗粒级配的连续性与分形相似性,试验中选取粒径小于20 mm的部分进行试验;同时,为了在试验中能够更好地观测松散颗粒的堵塞和运动过程,对不同粒径组的泥沙颗粒分别进行染色处理。泥石流试样的容重采用称重法确定,试验中采用的模型砂级配曲线如图2所示。

    图  2  试验砂级配图
    Figure  2.  Sands grading used in the tests

    利用水槽试验,探讨沟域特征和不同性质下的泥石流,通过不同的形态卡口时泥石流的堵溃过程与流量放大效应。试验步骤如下:

    ①按照预定级配与泥石流容重,分别对模型砂与水进行称重,通过搅拌机充分,然后通过标准工具测量容重;

    ②调整水槽坡度至试验预定值;

    ③准备好所有测量仪器与记录装置;

    ④首先不设置卡口,分析顺直沟道泥石流的运动过程。

    a. 试验开始时利用数码摄像机录制试验过程,以测量泥石流泥深,龙头流速及流态,并记录床沙启动过程;

    b. 使用数码摄像机和水位计记录集水池的水位变化以获得泥石流的流量过程,并于未设置卡口时的流量过程进行对比分析;

    c. 测量水槽内泥石流的冲淤测量,摄影并绘制冲蚀—堆积关系图。

    d. 对水槽内的泥石流冲蚀—堆积物进行取样,送试验室分析。

    ⑤在试验水槽设置卡口,重复④a—d;

    ⑥改变其他试验条件,重复①—⑥。

    卡口段泥石流堵溃过程试验从2020年6月开始至2021年10月,共进行试验9组31次。其中无卡口对比试验6次(SY0-1—SY0-6),正式试验8组25次,各组次试验参数如表3所示。其中变量为卡口宽度(w)、卡口扩展角(a)、束窄率(Ar)、卡口长度(L)、颗粒中值粒径(D50)、泥石流容重(γd)、松散物源(Vs)。

    表  3  试验组次安排表
    Table  3.  Schedule of test groups
    组次 卡口形态 泥石流特征 沟域特征 松散物源
    /(10−3m3
    卡口形状 卡口宽度
    /cm
    卡口扩展角
    /(°)
    束窄率 卡口长度
    /cm
    颗粒中值
    粒径/mm
    泥石流容重
    /(kN·m−3
    沟道纵坡
    /(°)
    SY0-1 3.458 18.27 6
    SY0-2 3.458 18.27 9
    SY0-3 3.458 18.27 12
    SY0-4 3.458 18.27 6
    SY0-5 3.458 18.27 9
    SY0-6 3.458 18.27 12
    SY1-1 矩形 12.5 0.250 30 3.458 18.27 9
    SY1-2 10 0.333
    SY1-3 7.5 0.417
    SY2-1 V形 60 0.268 30 3.458 18.27 9
    SY2-2 45 0.413
    SY2-3 30 0.567
    SY3-1 梯形 (10,20) 0.5 30 3.458 18.27 9
    SY3-2 (10,10) 0.67
    SY4-1 梯形 (10,20) 0.5 20 3.458 18.27 9
    SY4-2 30
    SY4-3 40
    SY5-1 梯形 (10,20) 0.5 30 3.458 16.85 9
    SY5-2 18.27
    SY5-3 19.62
    SY5-4 20.35
    SY6-1 梯形 (10,20) 0.5 30 1.734 18.27 9
    SY6-2 3.458
    SY6-3 5.264
    SY6-4 9.935
    SY7-1 梯形 (10,20) 0.5 30 3.458 18.27 6
    SY7-2 9
    SY7-3 12
    SY8-1 梯形 (10,20) 0.5 30 3.458 18.27 9 3.37
    SY8-2 6.74
    SY8-3 10.11
      注:(10,20)分别代表梯形卡口底宽与顶宽。
    下载: 导出CSV 
    | 显示表格

    卡口段泥石流的堵塞与溃决过程与卡口的几何形态、泥石流流体特征以及沟域特征有密切的关系,文章通过单因素试验的方法,探讨上述因素对卡口段泥石流运动与堆积过程的影响。

    泥石流流经卡口段时,泥石流的运动状态与参数发生明显改变,且与卡口形态和卡口束窄率具有较大的相关性。

    泥石流流经卡口段时,由于沟道过流断面变小,在卡口内存在急流冲刷现象,但在卡口段上游大量堆积物从泥石流流体中析出,固体颗粒大量沉积,

    泥位变大,并有显著表面粗化现象;通过卡口后,泥石流的固体物质出现轻微分选,出口处泥石流峰值流量相对于无卡口段时,出现了显著的衰减(图3)。为了探讨泥石流通过卡口段流量的变化大小,定义无量纲参数流量比Qpr

    图  3  不同形态卡口条件下泥石流的流量过程线
    Figure  3.  Discharge hydrograph of debris flow through different bayonets
    Qpr=Qpo/Qpi (1)

    式中:Qpo——闸门出口处泥石流峰值流量/(L·s−1);

    Qpi——料箱泥石流出流峰值流量/(L·s−1)。

    不同类型的卡口对泥石流通过卡口前后峰值流量的影响有所不同,矩形卡口流量比0.512~0.765,V形卡口流量比0.534~0.844,梯形卡口流量比0.788~0.909。同时,试验结果表明,卡口段泥石流流量的衰减与卡口断面的束窄率呈负相关关系,即卡口处断面相对于上游沟道变窄程度越大,泥石流流量衰减程度越高,可近似采用线型关系表示(图4):

    图  4  卡口束窄率与流量比的关系
    Figure  4.  The relation between narrowing rate of bayonet and discharge ratio
    Qpr=0.95Ar+1.26,R2=0.94 (2)
    Ar=1AkAg (3)

    式中:Ar——卡口束窄率;

    Ak——卡口段水槽横断面面积/cm2

    Ag——无卡口水槽断面面积/cm2

    从试验结果可知,泥石流流经卡口微地形时,泥石流流量会发生衰减,且卡口处地形断面相对于沟道上游断面变化越大,则流量越易产生衰减。

    相对于无卡口时,各组次试验泥石流通过卡口后,流量过程线均出现洪峰展平的现象(图3),一次泥石流过程持续时间延长,洪峰出现时刻延后,且延后时间(Td/s)与流量比以及卡口断面束窄率呈正相关关系,即卡口处断面束窄程度越大,泥石流峰值流量滞后时间越长,可近似采用指数关系表示(图5):

    图  5  卡口束窄率与峰值流量延迟时间的关系
    Figure  5.  The relation between narrowing rate of bayonet and delay time of peak discharge
    Td=0.37e2.58Ar,R2=0.91 (4)

    试验中采用了三种不同纵向长度的卡口,用以探讨卡口段长度的变化对泥石流运动参数的影响,试验结果显示:卡口的长度的增加会增大泥石流流量衰减的过程,会减缓峰值流量出现时时刻,但不同卡口段长度时,泥石流通过卡口段的流量过程线并无明显区别,卡口段长度对泥石流运动参数的影响较小(图6)。

    图  6  不同卡口长度的泥石流流量过程线
    Figure  6.  Discharge hydrograph of debris flow with different bayonet lengths

    试验结果表明(图7),泥石流容重与固体颗粒体积比浓度越大,其运动阻力越大,流速越慢,泥石流在遭遇卡口段时,越易产生堆积作用,泥石流在卡口段的流量衰减过程越显著;同时,随着泥石流容重的增大,泥石流峰值流量出现时刻也越晚,洪峰展平的现象也越显著。

    图  7  不同容重泥石流通的流量过程线
    Figure  7.  Discharge hydrograph of debris flow with different bulk density

    泥石流颗粒级配对卡口段的泥石流运动过程也有较大影响(图8)。颗粒粒径越粗,同等水力条件下,遭遇到卡口后,卡口上游段泥石流固体可以更易发生堆积作用,致使通过卡口段的泥石流流量发生衰减,泥石流过流总量减小,但泥石流级配对卡口处泥石流峰值流量出现时刻的无较明显影响。

    图  8  不同级配泥石流的流量过程线
    Figure  8.  Discharge hydrograph of debris flow with different gradation

    从试验结果来看,水槽纵坡较大时,如图9(a),J=12°),泥石流排泄速度越快,卡口的存在对泥石流的运动过程影响较小,泥石流流量过程线越趋向于尖瘦型,泥石流固体物质在卡口段前不易发生堆积作用,卡口处出现急流冲刷现象,相应的泥石流通过卡口段时的流量衰减越小,卡口段前后流量比也越大,洪峰展平现象越不显著;水槽纵坡较小时,如图9(c)中曲线J=6°,卡口的存在致使一次泥石流持续时间延长,卡口段前部固体物质大量堆积,峰值流量出现时刻显著延后,洪峰展平现象也更为显著。通过分析不同坡度条件下,卡口段泥石流峰值流量的衰减率,可以发现:泥石流峰值流量的衰减与沟道坡度负相关、如图10所示,即沟道坡度越大,越不易产生流量衰减,相应的沟道坡度越小,则越易产生沟道局部堵塞的现象。

    图  9  不同坡度条件下泥石流的流量过程线
    Figure  9.  Discharge hydrograph of debris flow with different inclination
    图  10  J-Qpr关系图(弧度表示法(360°=2π))
    Figure  10.  J-Qpr relation

    同时,水槽纵坡也会影响峰值流量延迟的时间,坡度越大延迟时间越短,泥石流流量过程洪峰展平的迹象也越不显著。

    野外调查表明,卡口段泥石流的堵溃过程与流量放大效应与滑坡堆积体、支沟泥石流堆积扇等坡地重力作用形成的半堵塞、全堵塞沟道密切相关,松散堆积物常堆积与沟道一侧,沟道多向对岸偏移或沟道局部侵蚀基准面抬高,从而形成堆积型卡口。试验中在水槽两侧堆放不同体积的堆积物,按照长度为20 cm的V形卡口布置于试验水槽卡口段,模拟堆积型卡口对泥石流堵溃作用的影响。

    从试验结果来看(图11),当沟道内存在堆积型卡口时,虽然堆积型卡口的存在会耗散泥石流运动的动能,但由于堆积物大量进入泥石流浆体,泥石流流量有显著增大的趋势,峰值流量出现时刻延后,一次泥石流总量也显著增大。

    图  11  不同体积的堆积型卡口段的流量过程线
    Figure  11.  Discharge hydrograph through sediment bayonet with different volumes

    试验结果表明,泥石流流经卡口段时,若沟道内无松散物源的补给,则会产生流量衰减过流,泥石流峰值流量出现时刻延后,洪峰过程线展平;泥石流通过卡口段时其流量比主要与以下3个无量纲参数有关:γs/γdw/D50J/Ar,定义无量纲参数K综合表示,通过试验数据回归分析,卡口段泥石流流量比Qpr可表示为(图12):

    图  12  K-Qpr关系图
    Figure  12.  K-Qpr relation
    Qpr=0.47K0.22K=γdγswD50JArR2=0.71 (5)

    式中:γs/γd——泥石流相对容重;

    w/D50——泥石流固体颗粒代表粒径与卡口的相对 大小;

    J/Ar——泥石流潜在动能与卡口段能量耗散之间的 比值;

    K——无量纲参数。

    对于单位宽度、单位长度的水体在单位时间内所泥石流运动所提供的能量W可以表示为:

    W=γdqJ (6)

    式中:γd——泥石流的容重/(kN·m−3);

    q——单宽流量/(L·s−1);

    J——能坡/(°)。

    沟床床面的输沙浓度与水流提供的功率存在线性关系,即:

    Sv=k(WWe) (7)

    式中:Sv——以干容重计的单宽输沙率;

    k——输砂常数;

    We——特定粒径泥砂的启动功率,当坡度条件不变时,泥砂的启动功率为常数。

    从式(6)可以得出,当泥石流流经卡口段时,沟道断面的突变,必然会引起由于克服卡口阻力而产生能量耗散,泥石流输砂浓度减小,泥石流固体物质析出,导致峰值流量衰减,因此式(5)中的K值实质上表征了泥石流流体动能与固体颗粒启动或堆积时的能量耗散之间的相互关系。

    (1)文中通过试验分析了泥石流通过卡口段时,泥石流运动参数的变化以及卡口的堵塞效应。文中通过试验发现,泥石流通过卡口地形时,泥石流流量出现堵塞效应而产生的流量放大,或因为固体物质堆积而出现流量衰减,均与卡口部位的几何条件、泥石流特征、沟域特征、是否存在附加松散物源有关。当卡口附近无附加松散物源时,改变其他3个试验条件时,均出现了流量衰减的现象,即流量比Qpr<1;而堆积型卡口,由于有附加堆积物的,泥石流体积比浓度与一次泥石流总量的增大,3次试验中,有2次出现了流量的放大作用,即流量比Qpr>1(即试验S8-1—S8-3)。

    (2)泥石流通过卡口段时,由于过流断面的减小,卡口上游段必然产生涌塞,局部流速减小,泥石流固体物质析出而堆积于沟道之上,致使泥石流通过卡口后出现流量衰减。从能量耗散的角度来看,卡口地形改变了泥石流运动的边界条件,导致能量的耗散;当无附加能坡或固体物质时,则必然会出现流量衰减的现象。

    (3)泥石流流量计算方法的研究最早始于20世纪30年代,M.斯里勃內依采用雨洪修正法计算泥石流流量,并采用附加流量表示沟道堵塞效应,或通过堵塞系数表征泥石流流量的这种叠加效应,并在我国泥石流研究与防治工程设计中广泛应用。但对于某一具体流域的堵塞系数仍然是未知数,在定量取值上有很大的主观性和不确定性,目前一般认为泥石流的堵塞系数取值范围为1.0~3.0。文中所定义的流量比Qpr实质上即为泥石流在特定断面的堵塞系数,其取值在很多条件下并不是大于1的;因此,在沟道纵坡较小,卡口束窄率较大,而沟道内又无较多可活动物源的条件下,笼统地将堵塞系数取值大于1,缺乏合理性,容易引起泥石流防治工程超标设计,造成极大的投资浪费。

    (4)卡口段泥石流堵塞现象成因复杂,本试验以野外试验成果级配构成基本试验参数,在野外调配基本浆体,但野外调配级配时并未考虑泥石流规模和固体物质来源方式与大颗粒物质等因素的影响,试验数据因大颗粒物质含量过少,明显的堵溃与冲淤现象在试验组次中相较野外原型可能存在数量变少的情况,从而对推导流量比产生间接影响。但通过文中的试验现象揭露,卡口的存在多为泥石流流量衰减的正面因素,而是否存在松散物质的加入则是卡口段泥石流的堵塞效应发生的关键因素。因此,在泥石流调查研究和防治工程勘查设计时,应更加侧重于堆积型卡口的形态、规模以及参与泥石流活动的方式,以期获得更加合理的泥石流运动参数。

  • 图  1   黄土高原梁、峁、丘陵地貌[20]

    Figure  1.   The loess ridges, hillocks, and hill landscapes of the loess plateau[20]

    图  2   黄土高原地区崩塌、滑坡、泥石流、、地面塌陷易发程度图

    Figure  2.   Susceptibility to avalanches, landslides, debris flows, and surface collapses in the loess plateau

    图  3   黄土高原及周边地区地震分布[36]

    Figure  3.   Earthquake distribution in the loess plateau and surrounding areas[36]

    图  4   拟动力法的地震波传播过程与条块地震力计算

    Figure  4.   Seismic wave propagation process and strip seismic force calculation using the pseudo-dynamic method

  • [1] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1 − 13. [TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1 − 13. (in Chinese with English abstract)]

    TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1 − 13. (in Chinese with English abstract)

    [2] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)]

    TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)

    [3] 黄润秋,李为乐. “5•12” 汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    [4] 国务院抗震救灾总指挥部. 汶川特大地震抗震救灾总结报告[R]. 2008. [State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)]

    State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)

    [5] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.04.001

    [6] 张倬元. 工程地质分析原理[M]. 4版. 北京:地质出版社,2016. [ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing:Geological Publishing House,2016. (in Chinese)]

    ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing: Geological Publishing House, 2016. (in Chinese)

    [7] 王椿镛,段永红,吴庆举,等. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,2016,38(4):511 − 549. [WANG Chunyong,DUAN Yonghong,WU Qingju,et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica,2016,38(4):511 − 549. (in Chinese with English abstract)]

    WANG Chunyong, DUAN Yonghong, WU Qingju, et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica, 2016, 38(4): 511 − 549. (in Chinese with English abstract)

    [8] 孙金龙,徐辉龙,詹文欢,等. 南海北部陆缘地震带的活动性与发震机制[J]. 热带海洋学报,2012,31(3):40 − 47. [SUN Jinlong,XU Huilong,ZHAN Wenhuan,et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography,2012,31(3):40 − 47. (in Chinese with English abstract)]

    SUN Jinlong, XU Huilong, ZHAN Wenhuan, et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(3): 40 − 47. (in Chinese with English abstract)

    [9] 徐杰,周本刚,计凤桔,等. 华北渤海湾盆地区大震发震构造的基本特征[J]. 地震地质,2012,34(4):618 − 636. [XU Jie,ZHOU Bengang,JI Fengju,et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area,North China[J]. Seismology and Geology,2012,34(4):618 − 636. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2012.04.008

    XU Jie, ZHOU Bengang, JI Fengju, et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area, North China[J]. Seismology and Geology, 2012, 34(4): 618 − 636. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2012.04.008

    [10] 陈祥熊,袁定强,吴长江. 台湾海峡南部Ms 7.3地震震源破裂特征及东南沿海地震形势分析[J]. 地震学报,1996(2):145 − 155. [CHEN Xiangxiong,YUAN Dingqiang,WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica,1996(2):145 − 155. (in Chinese with English abstract)]

    CHEN Xiangxiong, YUAN Dingqiang, WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica, 1996(2): 145 − 155. (in Chinese with English abstract)

    [11] 王卫民,赵连锋,李娟,等. 四川汶川8.0级地震震源过程[J]. 地球物理学报,2008,51(5):1403 − 1410. [WANG Weimin,ZHAO Lianfeng,LI Juan,et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,2008,51(5):1403 − 1410. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0001-5733.2008.05.013

    WANG Weimin, ZHAO Lianfeng, LI Juan, et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 2008, 51(5): 1403 − 1410. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2008.05.013

    [12] 李锦轶,刘建峰,曲军峰,等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报,2019,35(10):2989 − 3016. [LI Jinyi,LIU Jianfeng,QU Junfeng,et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica,2019,35(10):2989 − 3016. (in Chinese with English abstract)] DOI: 10.18654/1000-0569/2019.10.04

    LI Jinyi, LIU Jianfeng, QU Junfeng, et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 2019, 35(10): 2989 − 3016. (in Chinese with English abstract) DOI: 10.18654/1000-0569/2019.10.04

    [13] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1 − 28. [PAN Guitang,XIAO Qinghui,LU Songnian,et al. Subdivision of tectonic units in China[J]. Geology in China,2009,36(1):1 − 28. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3657.2009.01.001

    PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.01.001

    [14] 李锦轶,张进,刘建峰,等. 中国大陆主要变形系统[J]. 地学前缘,2014,21(3):226 − 245. [LI Jinyi,ZHANG Jin,LIU Jianfeng,et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers,2014,21(3):226 − 245. (in Chinese with English abstract)]

    LI Jinyi, ZHANG Jin, LIU Jianfeng, et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers, 2014, 21(3): 226 − 245. (in Chinese with English abstract)

    [15] 王涛,吴树仁,石菊松,等. 历史强震对渭河中游群发大型滑坡的诱发效应反演[J]. 地球学报,2015,36(3):352 − 360. [WANG Tao,WU Shuren,SHI Jusong,et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica,2015,36(3):352 − 360. (in Chinese with English abstract)]

    WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica, 2015, 36(3): 352 − 360. (in Chinese with English abstract)

    [16] 徐岳仁,张伟恒,李文巧,等. 1556年华县地震同震黄土滑坡密集区的发现及意义[J]. 地震地质,2018,40(4):721 − 737. [XU Yueren,ZHANG Weiheng,LI Wenqiao,et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology,2018,40(4):721 − 737. (in Chinese with English abstract)]

    XU Yueren, ZHANG Weiheng, LI Wenqiao, et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology, 2018, 40(4): 721 − 737. (in Chinese with English abstract)

    [17] 张振中. 黄土地震灾害预测[M]. 北京:地震出版社,1999. [ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing:Seismological Press,1999. (in Chinese)]

    ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing: Seismological Press, 1999. (in Chinese)

    [18] 王亚强,王兰民,张小曳. GIS支持下的黄土高原地震滑坡区划研究[J]. 地理科学,2004,24(2):170 − 176. [WANG Yaqiang,WANG Lanmin,ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica,2004,24(2):170 − 176. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0690.2004.02.007

    WANG Yaqiang, WANG Lanmin, ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica, 2004, 24(2): 170 − 176. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0690.2004.02.007

    [19] 王海科. 重大工程影响下黄土渗透特性与入渗机理研究[D]. 西安:长安大学,2023. [WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an:Changan University,2023. (in Chinese with English abstract)]

    WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an: Changan University, 2023. (in Chinese with English abstract)

    [20] 王兰民,蒲小武,陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾,2019(3):33 − 40. [WANG Lanmin,PU Xiaowu,CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction,2019(3):33 − 40. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2019.03.009

    WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction, 2019(3): 33 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2019.03.009

    [21] 王绅皓,谢婉丽,常一伦,等. 浸水作用下湿陷性黄土微观结构及分形特征研究[J]. 高校地质学报,2023,29(2):280 − 288. [WANG Shenhao,XIE Wanli,CHANG Yilun,et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities,2023,29(2):280 − 288. (in Chinese with English abstract)]

    WANG Shenhao, XIE Wanli, CHANG Yilun, et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities, 2023, 29(2): 280 − 288. (in Chinese with English abstract)

    [22] 李维光,张继春. 地震作用下顺层岩质边坡稳定性的拟静力分析[J]. 山地学报,2007,25(2):184 − 189. [LI Weiguang,ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research,2007,25(2):184 − 189. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.02.009

    LI Weiguang, ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research, 2007, 25(2): 184 − 189. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.02.009

    [23] 邓东平,李亮,罗伟. 地震荷载作用下土钉支护边坡稳定性拟静力分析[J]. 岩土力学,2012,33(6):1787 − 1794. [DENG Dongping,LI Liang,LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics,2012,33(6):1787 − 1794. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.06.029

    DENG Dongping, LI Liang, LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics, 2012, 33(6): 1787 − 1794. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.06.029

    [24] 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报,2022,44(3):440 − 450. [LI Boliang,ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering,2022,44(3):440 − 450. (in Chinese with English abstract)] DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013

    LI Boliang, ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440 − 450. (in Chinese with English abstract) DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013

    [25] 赵振明,唐亚明,徐永,等. 山西大宁县典型滑坡体地貌特征与降雨和强震关系[J]. 地震工程学报,2020,42(6):1641 − 1649. [ZHAO Zhenming,TANG Yaming,XU Yong,et al. Geomorphic characteristics of typical landslides in Daning County,Shanxi Province,China,and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal,2020,42(6):1641 − 1649. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.06.1641

    ZHAO Zhenming, TANG Yaming, XU Yong, et al. Geomorphic characteristics of typical landslides in Daning County, Shanxi Province, China, and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal, 2020, 42(6): 1641 − 1649. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.06.1641

    [26]

    CLOSE U,MCCORMICK E. Where the mountains walked[J]. National Geographic Magazine,1922,41(5):445 − 464.

    [27] 王兰民. 黄土动力学[M]. 北京:地震出版社,2003. [WANG Lanmin. Loess dynamics[M]. Beijing:Seismological Press,2003. (in Chinese)]

    WANG Lanmin. Loess dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)

    [28] 李昭淑,崔鹏. 1556年华县大地震的次生灾害[J]. 山地学报,2007(4):425 − 430. [LI Zhaoshu,CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science,2007(4):425 − 430. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.04.007

    LI Zhaoshu, CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science, 2007(4): 425 − 430. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.04.007

    [29] 吕艳,董颖,冯希杰,等. 1556年陕西关中华县特大地震地质灾害遗迹发育特征[J]. 工程地质学报,2014,22(2):300 − 308. [LYU Yan,DONG Ying,FENG Xijie,et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province,China[J]. Journal of Engineering Geology,2014,22(2):300 − 308. (in Chinese with English abstract)]

    LYU Yan, DONG Ying, FENG Xijie, et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province, China[J]. Journal of Engineering Geology, 2014, 22(2): 300 − 308. (in Chinese with English abstract)

    [30]

    WANG T,WU S R,SHI J S,et al. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream[J]. Engineering Geology,2018,235:11 − 19. DOI: 10.1016/j.enggeo.2018.01.020

    [31] 徐岳仁,杜朋,李文巧,等. 1718年通渭M 7.5地震滑坡特征分析——黄土高原历史强震触发滑坡数据库的应用[J]. 地球物理学报,2020,63(3):1235 − 1248. [XU Yueren,DU Peng,LI Wenqiao,et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides:Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics,2020,63(3):1235 − 1248. (in Chinese with English abstract)] DOI: 10.6038/cjg2020N0146

    XU Yueren, DU Peng, LI Wenqiao, et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides: Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 1235 − 1248. (in Chinese with English abstract) DOI: 10.6038/cjg2020N0146

    [32]

    ZHUANG Jianqi,PENG Jianbing,XU Chong,et al. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake,Northwest of China[J]. Geomorphology,2018,314:1 − 12. DOI: 10.1016/j.geomorph.2018.04.012

    [33] 王磊,李孝波,苏占东,等. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J]. 地质力学学报,2019,25(4):536 − 543. [WANG Lei,LI Xiaobo,SU Zhandong,et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics,2019,25(4):536 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2019.25.04.052

    WANG Lei, LI Xiaobo, SU Zhandong, et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 2019, 25(4): 536 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.04.052

    [34] 冯卫,毕银强,唐亚明,等. 甘肃礼县至罗家堡断裂带沿线地质灾害分布规律及断层效应研究[J]. 自然灾害学报,2021,30(2):183 − 190. [FENG Wei,BI Yinqiang,TANG Yaming,et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters,2021,30(2):183 − 190. (in Chinese with English abstract)]

    FENG Wei, BI Yinqiang, TANG Yaming, et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters, 2021, 30(2): 183 − 190. (in Chinese with English abstract)

    [35] 王兰民,吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报,2013,35(3):401 − 412. [WANG Lanmin,WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal,2013,35(3):401 − 412. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    [36] 许冲,吴熙彦,徐锡伟. 黄土高原及邻区的地震滑坡[J]. 工程地质学报,2016,26(增刊):260 − 273. [XU Chong,WU Xiyan,XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology,2016,26(Sup):260 − 273. (in Chinese with English abstract)]

    XU Chong, WU Xiyan, XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 2016, 26(Sup): 260 − 273. (in Chinese with English abstract)

    [37] 黄雅虹. 地震作用下黄土斜坡的稳定性分析预测[J]. 西北地震学报,1998(3):53 − 59. [HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal,1998(3):53 − 59. (in Chinese with English abstract)]

    HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal, 1998(3): 53 − 59. (in Chinese with English abstract)

    [38] 马学宁. 地震作用下黑方台黄土滑坡稳定性分析及治理措施[J]. 湖南工程学院学报(自然科学版),2013,23(1):77 − 81. [MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition),2013,23(1):77 − 81. (in Chinese with English abstract)]

    MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2013, 23(1): 77 − 81. (in Chinese with English abstract)

    [39] 张振中,郑恒利,王兰民. 黄土随机振动强度参数在地震滑坡分析中的应用[J]. 西北地震学报,1991(3):45 − 49. [ZHANG Zhenzhong,ZHEGN Hengli,WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal,1991(3):45 − 49. (in Chinese with English abstract)]

    ZHANG Zhenzhong, ZHEGN Hengli, WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal, 1991(3): 45 − 49. (in Chinese with English abstract)

    [40] 邹谨敞,邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震,1996(1):1 − 6. [ZHOU Jinchang,ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake,1996(1):1 − 6. (in Chinese with English abstract)]

    ZHOU Jinchang, ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 1996(1): 1 − 6. (in Chinese with English abstract)

    [41] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3 − 13. [XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):3 − 13. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2001.01.002

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3 − 13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002

    [42] 陈存礼,杨鹏,何军芳. 饱和击实黄土的动力特性研究[J]. 岩土力学,2007,28(8):1551 − 1556. [CHEN Cunli,YANG Peng,HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics,2007,28(8):1551 − 1556. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.08.005

    CHEN Cunli, YANG Peng, HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics, 2007, 28(8): 1551 − 1556. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.08.005

    [43]

    CHEN Huie,JIANG Yaling,NIU Cencen,et al. Dynamic characteristics of saturated loess under different confining pressures:A microscopic analysis[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):931 − 944. DOI: 10.1007/s10064-017-1101-9

    [44]

    WANG Qian,WANG Yan,MA Wenguo,et al. Dynamic characteristics of post-cyclic saturated loess[J]. Applied Sciences,2022,13(1):306. DOI: 10.3390/app13010306

    [45]

    CAREY J M,MCSAVENEY M J,PETLEY D N. Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading[J]. Landslides,2017,14(3):789 − 804. DOI: 10.1007/s10346-016-0746-y

    [46]

    WU Zhijian,XU Shiming,CHEN Dawei,et al. An experimental study of the influence of structural parameters on dynamic characteristics of loess[J]. Soil Dynamics and Earthquake Engineering,2020,132:106067. DOI: 10.1016/j.soildyn.2020.106067

    [47]

    WANG Ping,WANG Jun,CHAI Shaofeng,et al. Experimental study on dynamic strength regional characteristics of undisturbed loess based on the mohr-coulomb failure criterion[J]. Advanced Materials Research,2013,700:111 − 118. DOI: 10.4028/www.scientific.net/AMR.700.111

    [48]

    QIAO Feng,CHANG Chaoyu,BO Jingshan,et al. Study on the dynamic characteristics of loess[J]. Sustainability,2023,15(6):5428. DOI: 10.3390/su15065428

    [49]

    WEI Tingting,WU Zhijian,CHEN Yanping,et al. Three-dimensional characterization and quantitative research of Malan loess microstructure under seismic loading[J]. Frontiers in Earth Science,2023,10:1106168. DOI: 10.3389/feart.2022.1106168

    [50]

    WANG N Q,LIU X L,LUO,et al. Study on Dynamic Strength Characteristics of Malan Loess. Applied Mechanics and Materials[C]. 2nd International Conference on Civil Engineering,Architecture and Building Materials (CEABM 2012),2012,Yantai,PEOPLES R CHINA.

    [51]

    WANG N Q,LIU X L,BO H,et al. Test of Dynamic Strength Characteristics of Lishi Loess. Applied Mechanics and Materials [C]. International Conference on Sensors,Measurement and Intelligent Materials (ICSMIM 2012),2012,Guilin,PEOPLES R CHINA.

    [52]

    LIU Wei,WANG Qian,LIN Gaochao,et al. Effect of pre-dynamic loading on dynamic liquefaction of undisturbed loess[J]. Bulletin of Earthquake Engineering,2020,18(13):5779 − 5806. DOI: 10.1007/s10518-020-00917-w

    [53]

    WANG Haojie,SUN Ping,LIU Enlong,et al. Dynamic properties of Tianshui saturated remolded loess:A laboratory study[J]. Engineering Geology,2020,272:105570. DOI: 10.1016/j.enggeo.2020.105570

    [54]

    CHENG Xuansheng,LI Xinlei,NIE Jun,et al. Research on the dynamic parameters of loess[J]. Geotechnical and Geological Engineering,2019,37(1):77 − 93. DOI: 10.1007/s10706-018-0592-x

    [55] 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展[J]. 防灾科技学院学报,2021,23(2):46 − 53. [YAN Lingyong,LI Xiaobo,OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention,2021,23(2):46 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2021.02.006

    YAN Lingyong, LI Xiaobo, OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention, 2021, 23(2): 46 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2021.02.006

    [56] 刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安:长安大学,2012. [LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an:Changan University,2012. (in Chinese with English abstract)]

    LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an: Changan University, 2012. (in Chinese with English abstract)

    [57]

    CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert-Huang transform method using a large-scale shaking table test[J]. Engineering Geology,2022,302:106630. DOI: 10.1016/j.enggeo.2022.106630

    [58] 王明轩,倪万魁. 喜家湾地震黄土滑坡形成机理[J]. 华北地震科学,2018,36(1):54 − 58. [WANG Mingxuan,NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences,2018,36(1):54 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-1375.2018.01.009

    WANG Mingxuan, NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences, 2018, 36(1): 54 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1375.2018.01.009

    [59] 徐舜华,吴志坚,孙军杰,等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 地震工程学报,2013,35(3):471 − 476. [XU Shunhua,WU Zhijian,SUN Junjie,et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal,2013,35(3):471 − 476. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0471

    XU Shunhua, WU Zhijian, SUN Junjie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471 − 476. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0471

    [60] 王鼐,王兰民. 河谷地区黄土地震滑坡特征与影响因素分析[J]. 岩土工程学报,2013,35(增刊1):434 − 438. [WANG Nai,WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 1):434 − 438. (in Chinese with English abstract)]

    WANG Nai, WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 434 − 438. (in Chinese with English abstract)

    [61] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)]

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)

    [62] 段玉石,薄景山,彭达,等. 地震诱发黄土滑坡分布特征分析——以1920年海原特大地震为例[J]. 应用基础与工程科学学报,1 − 17. [DUAN Yushi,BO Jingshan,PENG Da,et al. Distribution characteristics of earthquake-induced loess landslides:A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering,1 − 17. (in Chinese with English abstract)]

    DUAN Yushi, BO Jingshan, PENG Da, et al. Distribution characteristics of earthquake-induced loess landslides: A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering, 1 − 17. (in Chinese with English abstract)

    [63] 钱紫玲. 基于统计模型的黄土地震滑坡危险性评价[D]. 兰州:中国地震局兰州地震研究所,2023. [QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2023. (in Chinese with English abstract)]

    QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2023. (in Chinese with English abstract)

    [64] 程小杰,杨为民,向灵芝,等. 基于Newmark模型的天水市北山地震黄土滑坡危险性评价[J]. 地质力学学报,2017,23(2):296 − 305. [CHENG Xiaojie,YANG Weimin,XIANG Lingzhi,et al. Risk assessment of seismic loess landslide based on newmark model in Beishan,Tianshui City[J]. Journal of Geomechanics,2017,23(2):296 − 305.(in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.02.013

    CHENG Xiaojie, YANG Weimin, XIANG Lingzhi, et al. Risk assessment of seismic loess landslide based on newmark model in Beishan, Tianshui City[J]. Journal of Geomechanics, 2017, 23(2): 296 − 305.(in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.02.013

    [65] 邓龙胜. 强震作用下黄土边坡的动力响应机理和动力稳定性研究[D]. 西安:长安大学,2010. [DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an:Changan University,2010. (in Chinese with English abstract)]

    DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)

    [66] 赵文琛. 强震作用下黄土斜坡动力响应特征与稳定性分析[D]. 兰州:中国地震局兰州地震研究所,2016. [ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2016. (in Chinese with English abstract)]

    ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2016. (in Chinese with English abstract)

    [67] 车福东,王涛,辛鹏,等. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报,2020,39(12):1981 − 1992. [CHE Fudong,WANG Tao,XIN Peng,et al. Dynamic response and deformation of loess landslide under near and far earthquakes:A case study of Liping Village landslide in Tianshui earthquake area,Gansu Province[J]. Geological Bulletin of China,2020,39(12):1981 − 1992. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2020.12.012

    CHE Fudong, WANG Tao, XIN Peng, et al. Dynamic response and deformation of loess landslide under near and far earthquakes: A case study of Liping Village landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981 − 1992. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2020.12.012

    [68] 常晁瑜,徐久欢,薄景山,等. 基于颗粒流的地震液化型滑坡运动学特征分析[J]. 地震工程与工程振动,2022,42(6):153 − 161. [CHANG Chaoyu,XU Jiuhuan,BO Jingshan,et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):153 − 161. ((in Chinese with English abstract)]

    CHANG Chaoyu, XU Jiuhuan, BO Jingshan, et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 153 − 161. ((in Chinese with English abstract)

    [69] 张子东,张晓超,任鹏,等. 非饱和黄土动力液化研究 ——以党家岔滑坡为例[J]. 地震工程学报,2021,43(5):1228 − 1237. [ZHANG Zidong,ZHANG Xiaochao,REN Peng,et al. Dynamic liquefaction of unsaturated loess:A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal,2021,43(5):1228 − 1237. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1228

    ZHANG Zidong, ZHANG Xiaochao, REN Peng, et al. Dynamic liquefaction of unsaturated loess: A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal, 2021, 43(5): 1228 − 1237. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1228

    [70] 吴志坚,陈豫津,王谦,等. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报,2019,41(S2):165 − 168. [WU Zhijian,CHEN Yujin,WANG Qian,et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering,2019,41(S2):165 − 168. (in Chinese with English abstract)] DOI: 10.11779/CJGE2019S2042

    WU Zhijian, CHEN Yujin, WANG Qian, et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165 − 168. (in Chinese with English abstract) DOI: 10.11779/CJGE2019S2042

    [71] 张晓超,裴向军,张茂省,等. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报,2018,26(5):1219 − 1226. [ZHANG Xiaochao,PEI Xiangjun,ZHANG Maosheng,et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake:A case study in Dangjiacha,Ningxia Province[J]. Journal of Engineering Geology,2018,26(5):1219 − 1226. (in Chinese with English abstract)]

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake: A case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219 − 1226. (in Chinese with English abstract)

    [72] 国家地震局兰州地震研究所宁夏回族自治区地震队. 一九二〇年海原大地震[M]. 北京:地震出版社,1980. [Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing:Seismological Press,1980. (in Chinese)]

    Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)

    [73] 彭建兵,王启耀,门玉明,等. 黄土高原滑坡灾害[M]. 北京:科学出版社,2019. [PENG Jianbing,WANG Qiyao,MEN Yuming,et al. Landslide disaster in Loess Plateau[M]. Beijing:Science Press,2019. (in Chinese)]

    PENG Jianbing, WANG Qiyao, MEN Yuming, et al. Landslide disaster in Loess Plateau[M]. Beijing: Science Press, 2019. (in Chinese)

    [74] 张振中,张冬丽,刘红玫. 黄土震陷灾害典型震例的综合研究(英文)[J]. 西北地震学报,2005,27(1):36 − 41. [ZHANG Zhenzhong,ZHANG Dongli,LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal,2005,27(1):36 − 41. (in English with Chinese abstract)]

    ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal, 2005, 27(1): 36 − 41. (in English with Chinese abstract)

    [75] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1 − 19. [WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1 − 19. (in Chinese with English abstract)] DOI: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1 − 19. (in Chinese with English abstract) DOI: 10.11779/CJGE202001001

    [76]

    SHANG H,NI W K,NIU F J,et al. Development characteristics and causes of seismic loess landslides in north-west China [J]. Disaster Advances,2013,6:24-38.

    [77]

    ZHONG Xiumei,XU Xiaowei,CHEN Wenkai,et al. Characteristics of loess landslides triggered by the 1927 Mw8.0 earthquake that occurred in Gulang County,Gansu Province,China[J]. Frontiers in Environmental Science,2022,10:973262. DOI: 10.3389/fenvs.2022.973262

    [78]

    LI Xiaobo,YAN Lingyong,WU Yiwen,et al. Distribution and characteristics of loess landslides induced by the 1654 Tianshui earthquake,Northwest of China[J]. Landslides,2023,20(12):2775 − 2790. DOI: 10.1007/s10346-023-02128-1

    [79] 陈永明,石玉成,刘红玫,等. 黄土地区地震滑坡的分布特征及其影响因素分析[J]. 中国地震,2005,21(2):235 − 243. [CHEN Yongming,SHI Yucheng,LIU Hongmei,et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China,2005,21(2):235 − 243. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4683.2005.02.011

    CHEN Yongming, SHI Yucheng, LIU Hongmei, et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China, 2005, 21(2): 235 − 243. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4683.2005.02.011

    [80] 王兰民,郭安宁,王平,等. 1920年海原大地震震害特征与启示[J]. 城市与减灾,2020(6):43 − 53. [WANG Lanmin,GUO Anning,WANG Ping,et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction,2020(6):43 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2020.06.007

    WANG Lanmin, GUO Anning, WANG Ping, et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction, 2020(6): 43 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2020.06.007

    [81] 王尚,梁庆国,乔向进,等. 基于小波包和反应谱的黄土边坡动力特征研究[J]. 地震工程学报,2023,45(1):94 − 102. [WANG Shang,LIANG Qingguo,QIAO Xiangjin,et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal,2023,45(1):94 − 102. (in Chinese with English abstract)]

    WANG Shang, LIANG Qingguo, QIAO Xiangjin, et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal, 2023, 45(1): 94 − 102. (in Chinese with English abstract)

    [82] 张兴臣,梁庆国,孙文,等. 地震作用下黄土边坡动力响应的时频特征分析[J]. 地震工程学报,2022,44(5):1090 − 1099. [ZHANG Xingchen,LIANG Qingguo,SUN Wen,et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal,2022,44(5):1090 − 1099. (in Chinese with English abstract)]

    ZHANG Xingchen, LIANG Qingguo, SUN Wen, et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal, 2022, 44(5): 1090 − 1099. (in Chinese with English abstract)

    [83] 张彬,邵帅,邵生俊,等. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报,2023,45(4):869 − 875. [ZHANG Bin,SHAO Shuai,SHAO Shengjun,et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):869 − 875. (in Chinese with English abstract)]

    ZHANG Bin, SHAO Shuai, SHAO Shengjun, et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869 − 875. (in Chinese with English abstract)

    [84] 孙文,梁庆国,乔向进,等. 不同失稳形态黄土边坡的动力响应研究[J]. 铁道学报,2022,44(6):123 − 130. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society,2022,44(6):123 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-8360.2022.06.015

    SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society, 2022, 44(6): 123 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-8360.2022.06.015

    [85] 孙文,梁庆国,乔向进,等. 黄土边坡动力失稳的振动台试验研究[J]. 兰州交通大学学报,2021,40(2):15 − 22. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University,2021,40(2):15 − 22. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4373.2021.02.003

    SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 15 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4373.2021.02.003

    [86] 田欣欣,严武建,郑海忠,等. 地震作用下含暗穴高边坡黄土路基稳定性分析[J]. 地震工程学报,2022,44(1):72 − 78. [TIAN Xinxin,YAN Wujian,ZHENG Haizhong,et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal,2022,44(1):72 − 78. (in Chinese with English abstract)]

    TIAN Xinxin, YAN Wujian, ZHENG Haizhong, et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal, 2022, 44(1): 72 − 78. (in Chinese with English abstract)

    [87] 万金侠,施艳秋,陈小云. 基于动土压力响应特性的黄土滑坡振动台试验研究[J]. 防灾减灾工程学报,2021,41(3):586 − 593. [WAN Jinxia,SHI Yanqiu,CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):586 − 593. (in Chinese with English abstract)]

    WAN Jinxia, SHI Yanqiu, CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 586 − 593. (in Chinese with English abstract)

    [88] 邵帅,邵生俊,李宁,等. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报,2021,43(2):245 − 253. [SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):245 − 253. (in Chinese with English abstract)]

    SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245 − 253. (in Chinese with English abstract)

    [89] 施艳秋,谢显龙,张玘恺,等. 基于小波变换的黄土滑坡动土压力响应及其频谱特性研究[J]. 岩石力学与工程学报,2020,39(12):2570 − 2581. [SHI Yanqiu,XIE Xianlong,ZHANG Qikai,et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2570 − 2581. (in Chinese with English abstract)]

    SHI Yanqiu, XIE Xianlong, ZHANG Qikai, et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2570 − 2581. (in Chinese with English abstract)

    [90] 陈金昌,王兰民,王平,等. 基于振动台试验的纯黄土边坡动力响应研究[J]. 地震工程学报,2020,42(2):529 − 535. [CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal,2020,42(2):529 − 535. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.02.529

    CHEN Jinchang, WANG Lanmin, WANG Ping, et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 2020, 42(2): 529 − 535. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.02.529

    [91] 夏坤,董林,蒲小武,等. 黄土塬地震动响应特征分析[J]. 岩土力学,2020,41(1):295 − 304. [XIA Kun,DONG Lin,PU Xiaowu,et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics,2020,41(1):295 − 304. (in Chinese with English abstract)]

    XIA Kun, DONG Lin, PU Xiaowu, et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics, 2020, 41(1): 295 − 304. (in Chinese with English abstract)

    [92] 张泽林,吴树仁,王涛,等. 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学,2018,39(7):2403 − 2412. [ZHANG Zelin,WU Shuren,WANG Tao,et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics,2018,39(7):2403 − 2412. (in Chinese with English abstract)]

    ZHANG Zelin, WU Shuren, WANG Tao, et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics, 2018, 39(7): 2403 − 2412. (in Chinese with English abstract)

    [93] 芮雪莲,裴向军,张晓超. 强震触发黄土滑坡发生机制试验[J]. 实验室研究与探索,2016,35(1):23 − 26. [RUI Xuelian,PEI Xiangjun,ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory,2016,35(1):23 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7167.2016.01.007

    RUI Xuelian, PEI Xiangjun, ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory, 2016, 35(1): 23 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7167.2016.01.007

    [94] 张晓超,黄润秋,许模,等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学,2014,35(3):801 − 810. [ZHANG Xiaochao,HUANG Runqiu,XU Mo,et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics,2014,35(3):801 − 810. (in Chinese with English abstract)]

    ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801 − 810. (in Chinese with English abstract)

    [95]

    PEI Xiangjun,ZHANG Xiaochao,GUO Bin,et al. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology,2017,223:23 − 30. DOI: 10.1016/j.enggeo.2017.03.016

    [96] 胡成,卢坤林,朱大勇,等. 三维边坡拟静力抗震稳定性分析[J]. 岩石力学与工程学报,2011,30(增刊1):2904 − 2912. [HU Cheng,LU Kunlin,ZHU Dayong,et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011,30(Sup 1):2904 − 2912. (in Chinese with English abstract)]

    HU Cheng, LU Kunlin, ZHU Dayong, et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(Sup 1): 2904 − 2912. (in Chinese with English abstract)

    [97] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHEGN Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)]

    ZHEGN Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)

    [98] 刘春玲,祁生文,童立强,等. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报,2004(16):2730 − 2733. [LIU Chunling,QI Shengwen,TONG Liqiang,et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering,2004(16):2730 − 2733. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2004.16.014

    LIU Chunling, QI Shengwen, TONG Liqiang, et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(16): 2730 − 2733. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2004.16.014

    [99]

    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2):139 − 160. DOI: 10.1680/geot.1965.15.2.139

    [100]

    STEEDMAN R S,ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall[J]. Géotechnique,1990,40(1):103 − 112.

    [101] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010

    LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010

    [102]

    KARRAY M,HUSSIEN M N,DELISLE M C,et al. Framework to assess pseudo-static approach for seismic stability of clayey slopes[J]. Canadian Geotechnical Journal,2018,55(12):1860 − 1876. DOI: 10.1139/cgj-2017-0383

    [103]

    MENDEZ B,TASTAN E O,GUTIERREZ J. Performance-based slope stability analysis and the pseudo-static factor of safety[C]//Geotechnical Frontiers 2017. Orlando,Florida. Reston,VA:American Society of Civil Engineers,2017,278:390 − 399.

    [104]

    UTILI S,ABD A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(5):785 − 806. DOI: 10.1002/nag.2498

    [105]

    TERZAGHI K. Mechanisms of landslide[M]. Engineering Geology (Berdey) volume,1950,Geological Society of America.

    [106]

    KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.

    [107]

    SEED H B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Géotechnique,1979,29(3):215 − 263.

    [108]

    SEED H B. Stability of earth and rock-fill dams during earthquake[J]. Embankment-Dam Eng. 1973. Casagrande.

    [109] 中华人民共和国国家经济贸易委员会. 水工建筑物抗震设计规范:DL 5073—2000[S]. 北京:中国电力出版社,2001. [State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures:DL 5073—2000[S]. Beijing:China Electric Power Press,2001. (in Chinese)]

    State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures: DL 5073—2000[S]. Beijing: China Electric Power Press, 2001. (in Chinese)

    [110] 中华人民共和国国家标准编写小组. 铁路工程抗震设计规范:GB 50111—2006[S]. 北京:中国计划出版社, 2009. [The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering:GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)]

    The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering: GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)

    [111] 中华人民共和国交通部. 公路工程抗震设计规范:JTJ 004—1989[S]. 北京:人民交通出版社,1990. [Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering:JTJ 004—1989[S]. Beijing:China Communications Press,1990. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering: JTJ 004—1989[S]. Beijing: China Communications Press, 1990. (in Chinese)

    [112] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范(2016版):GB 50011—2010[S]. 北京: 中国建筑工业出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition):GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition): GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)

    [113] 梁承龙,刘芳. 地震作用下双层土裂缝边坡稳定性分析[J]. 地震工程学报,2022,44(5):1050 − 1058. [LIANG Chenglong,LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal,2022,44(5):1050 − 1058. (in Chinese with English abstract)]

    LIANG Chenglong, LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal, 2022, 44(5): 1050 − 1058. (in Chinese with English abstract)

    [114]

    FARSHIDFAR N, KESHAVARZ A, MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method[J]. Arabian Journal of Geosciences,2020,13(7):283.

    [115] 袁中夏,李德鹏,叶帅华. 地震和降雨条件下黄土高填方边坡稳定性分析[J]. 兰州理工大学学报,2022,48(4):119 − 125. [YUAN Zhongxia,LI Depeng,YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology,2022,48(4):119 − 125. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-5196.2022.04.018

    YUAN Zhongxia, LI Depeng, YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 119 − 125. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-5196.2022.04.018

    [116] 李旭东,王平,王丽丽,等. 强震作用下坡顶建筑荷载对边坡稳定性影响研究[J]. 地震工程学报,2021,43(5):1220 − 1227. [LI Xudong,WANG Ping,WANG Lili,et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal,2021,43(5):1220 − 1227. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1220

    LI Xudong, WANG Ping, WANG Lili, et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal, 2021, 43(5): 1220 − 1227. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1220

    [117] 刘畅,张平松,杨为民,等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质,2020,53(4):176 − 185. [LIU Chang,ZHANG Pingsong,YANG Weimin,et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake,Tianshui,Gansu[J]. Northwestern Geology,2020,53(4):176 − 185. (in Chinese with English abstract)]

    LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake, Tianshui, Gansu[J]. Northwestern Geology, 2020, 53(4): 176 − 185. (in Chinese with English abstract)

    [118] 陈亚光. 宝兰客专天水市王家墩滑坡地震稳定性分析[J]. 地震工程学报,2019,41(6):1607 − 1614. [CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal,2019,41(6):1607 − 1614. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.06.1607

    CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal, 2019, 41(6): 1607 − 1614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.06.1607

    [119] 闫东晗,薄景山,李孝波,等. 海原特大地震红土川滑坡拟静力强度折减法模拟分析[J]. 科学技术与工程,2019,19(28):50 − 55. [YAN Donghan,BO Jingshan,LI Xiaobo,et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering,2019,19(28):50 − 55. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.006

    YAN Donghan, BO Jingshan, LI Xiaobo, et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering, 2019, 19(28): 50 − 55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.006

    [120] 孙萍,祝恩珍,张帅,等. 地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J]. 现代地质,2019,33(1):218 − 226. [SUN Ping,ZHU Enzhen,ZHANG Shuai,et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area,Gansu Province[J]. Geoscience,2019,33(1):218 − 226.(in Chinese with English abstract)]

    SUN Ping, ZHU Enzhen, ZHANG Shuai, et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area, Gansu Province[J]. Geoscience, 2019, 33(1): 218 − 226.(in Chinese with English abstract)

    [121]

    ZENG X,STEEDMAN R S. On the behaviour of quay walls in earthquakes[J]. Géotechnique,1993,43(3):417 − 431.

    [122]

    CHOUDHURY D,NIMBALKAR S. Seismic passive resistance by pseudo-dynamic method[J]. Géotechnique,2005,55(9):699 − 702.

    [123]

    CHOUDHURY D,NIMBALKAR S S. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical & Geological Engineering,2006,24(5):1103 − 1113.

    [124]

    CHOUDHURY D,NIMBALKAR S. Seismic rotational displacement of gravity walls by pseudo-dynamic method:Passive case[J]. Soil Dynamics and Earthquake Engineering,2007,27(3):242 − 249. DOI: 10.1016/j.soildyn.2006.06.009

    [125]

    BAZIAR M H,SHAHNAZARI H,RABETI MOGHADAM M. Sliding stability analysis of gravity retaining walls using the pseudo-dynamic method[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2013,166(4):389 − 398. DOI: 10.1680/geng.10.00036

    [126]

    YAN Zuofei,DENG Yahong,HE Jia,et al. A pseudodynamic approach of seismic active pressure on retaining walls based on a curved rupture surface[J]. Mathematical Problems in Engineering,2020,2020:6462034.

    [127]

    GANESH R,KHUNTIA S,SAHOO J P. Seismic uplift capacity of shallow strip anchors:A new pseudo-dynamic upper bound limit analysis[J]. Soil Dynamics and Earthquake Engineering,2018,109:69 − 75. DOI: 10.1016/j.soildyn.2018.03.004

    [128]

    ZHAO Lianheng,YU Chenghao,LI Liang,et al. Rock slope reliability analysis using Barton-Bandis failure criterion with modified pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2020,139:106310. DOI: 10.1016/j.soildyn.2020.106310

    [129]

    MUNWAR BASHA B,SIVAKUMAR BABU G L. Reliability assessment of internal stability of reinforced soil structures:A pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2010,30(5):336 − 353. DOI: 10.1016/j.soildyn.2009.12.007

    [130]

    BASHA B M,BABU G L S. Seismic reliability assessment of internal stability of reinforced soil walls using the pseudo-dynamic method[J]. Geosynthetics International,2011,18(5):221 − 241. DOI: 10.1680/gein.2011.18.5.221

    [131]

    ZHOU X P,CHENG H. Stability analysis of three-dimensional seismic landslides using the rigorous limit equilibrium method[J]. Engineering Geology,2014,174:87 − 102. DOI: 10.1016/j.enggeo.2014.03.009

    [132]

    CHAKRABORTY D,CHOUDHURY D. Pseudo-static and pseudo-dynamic stability analysis of tailings dam under seismic conditions[J]. Proceedings of the National Academy of Sciences,India Section A:Physical Sciences,2013,83(1):63 − 71. DOI: 10.1007/s40010-013-0069-5

    [133] 阮晓波,孙树林,刘文亮. 锚固岩石边坡地震稳定性拟动力分析[J]. 岩土力学,2013,34(增刊1):293 − 300. [RUAN Xiaobo,SUN Shulin,LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics,2013,34(Sup 1):293 − 300. (in Chinese with English abstract)]

    RUAN Xiaobo, SUN Shulin, LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 293 − 300. (in Chinese with English abstract)

    [134]

    RUAN Xiaobo,SUN Shulin,LIU Wenliang. Effect of the amplification factor on seismic stability of expanded municipal solid waste landfills using the pseudo-dynamic method[J]. Journal of Zhejiang University SCIENCE A,2013,14(10):731 − 738. DOI: 10.1631/jzus.A1300041

    [135]

    ZHOU Xiaoping,QIAN Qihu,CHENG Hao,et al. Stability analysis of two-dimensional landslides subjected to seismic loads[J]. Acta Mechanica Solida Sinica,2015,28(3):262 − 276. DOI: 10.1016/S0894-9166(15)30013-6

    [136] 卢玉林,薄景山,陈晓冉,等. 考虑渗流和地震时的砂土边坡稳定性计算[J]. 重庆大学学报,2017,40(1):65 − 75. [LU Yulin,BO Jingshan,CHEN Xiaoran,et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University,2017,40(1):65 − 75. (in Chinese with English abstract)]

    LU Yulin, BO Jingshan, CHEN Xiaoran, et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University, 2017, 40(1): 65 − 75. (in Chinese with English abstract)

    [137] 邓亚虹,徐召,孙科,等. 一种考虑波动效应的拟动力地震边坡稳定性分析方法[J]. 地球科学与环境学报,2019,41(5):623 − 630. [DENG Yahong,XU Zhao,SUN Ke,et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment,2019,41(5):623 − 630. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-6561.2019.05.010

    DENG Yahong, XU Zhao, SUN Ke, et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 623 − 630. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2019.05.010

    [138] 杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)]

    YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)

    [139] 蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et,al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)]

    JIANG Qingjiang, DENG Yahong, YANG Nan, et, al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)

    [140] 宋桂锋,杜江梅,柯鉴,等. 基于拟动力法的顺层岩质边坡稳定性极限分析[J]. 地震工程学报,2019,41(4):931 − 938. [SONG Guifeng,DU Jiangmei,KE Jian,et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal,2019,41(4):931 − 938. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.04.931

    SONG Guifeng, DU Jiangmei, KE Jian, et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal, 2019, 41(4): 931 − 938. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.04.931

    [141]

    BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering,2014,32(2):561 − 576. DOI: 10.1007/s10706-014-9734-y

    [142]

    CHANDA N,GHOSH S,PAL M. Seismic stability of slope using modified pseudo-dynamic method[J]. International Journal of Geotechnical Engineering,2019,13(6):548 − 559. DOI: 10.1080/19386362.2017.1372056

    [143]

    PAIN A,CHOUDHURY D,BHATTACHARYYA S K. Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure[J]. Geotextiles and Geomembranes,2017,45(5):471 − 486. DOI: 10.1016/j.geotexmem.2017.07.003

    [144]

    QIN Changbing,CHIAN S C. Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method[J]. International Journal of Geomechanics,2019,19(9):04019106. DOI: 10.1061/(ASCE)GM.1943-5622.0001489

    [145] 李雨浓,赵巍,刘畅,等. 基于修正拟动力法的抗滑桩加固边坡三维地震稳定性分析[J]. 中国公路学报,2024,37(1):44 − 54. [LI Yunnong,ZHAO Wei,LIU Chang,et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp,2024,37(1):44 − 54. (in Chinese with English abstract)]

    LI Yunnong, ZHAO Wei, LIU Chang, et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp, 2024, 37(1): 44 − 54. (in Chinese with English abstract)

    [146]

    CHEN Guanghui,ZOU Jinfeng,SHENG Yuming,et al. Three-dimensional seismic bearing capacity assessment of heterogeneous and anisotropic slopes[J]. International Journal of Geomechanics,2022,22(9):04022148. DOI: 10.1061/(ASCE)GM.1943-5622.0002493

    [147] 张磊,孙树林,储浩,等. 基于改进拟动力法的主动土压力分析研究[J]. 河北工程大学学报(自然科学版),2017,34(3):32 − 37. [ZHANG Lei,SUN Shulin,CHU Hao,et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition),2017,34(3):32 − 37. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-9469.2017.03.007

    ZHANG Lei, SUN Shulin, CHU Hao, et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2017, 34(3): 32 − 37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2017.03.007

    [148] 陈立伟,安彦勇,赵靓,等. 基于改进拟动力法的沿河岩石边坡地震抗倾覆稳定性分析[J]. 水道港口,2023,44(5):819 − 827. [CHEN Liwei,AN Yanyong,ZHAO Jing,et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor,2023,44(5):819 − 827. (in Chinese with English abstract)]

    CHEN Liwei, AN Yanyong, ZHAO Jing, et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor, 2023, 44(5): 819 − 827. (in Chinese with English abstract)

  • 期刊类型引用(6)

    1. 王勇,邢振涛,李锁,闫勇,司甜. 基于SBAS-InSAR和光学遥感的天津市北部山区潜在滑坡识别研究. 灾害学. 2025(01): 30-35 . 百度学术
    2. 谢哲,侯照方,谢杰. 基于钻探及室内试验的蒙城县地面沉降量预测. 能源技术与管理. 2025(01): 24-26 . 百度学术
    3. 赵志远,葛超英,徐雯佳. 时序InSAR技术对淮扬区域地面沉降监测. 四川地质学报. 2025(01): 162-169 . 百度学术
    4. 李幸丽,戴华阳,方军,张豪磊. 基于SBAS-InSAR技术的老采空区注浆充填地表变形时空分布特征分析. 中国矿业. 2024(11): 86-94 . 百度学术
    5. 马恩华,李益敏,俞文轩,吕圣彬. 基于InSAR的玉溪市红塔区地面沉降时空分布特征. 人民长江. 2024(S2): 113-120 . 百度学术
    6. 李松虎. 亳州市地下水超采现状及存在问题分析. 治淮. 2023(11): 7-9 . 百度学术

    其他类型引用(1)

图(4)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  61
  • PDF下载量:  133
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-04-25
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-28
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回