A review of earthquake-induced loess landslides research and future prospects
-
摘要:
黄土地区地貌形态复杂,地震频发,地震滑坡灾害严重。黄土地震滑坡受多种因素影响,包括黄土边坡地形地貌、地层岩性、动力响应,黄土强度和动力特性,水文地质条件等。目前,黄土地震滑坡研究主要采用室内试验、物理与数值模型试验、野外调研、遥感与监测等手段,研究内容包括黄土地震滑坡成因机理、发育特征与分布、滑坡动力响应和稳定性等方面。文章阐述了黄土地震滑坡国内外研究现状,介绍了一种考虑地震波动特性的拟动力评价方法,并对基于拟动力法开展黄土地震滑坡研究进行了展望。通过分析黄土地震滑坡力学成因机制、研究黄土滑坡地震液化现象、讨论黄土地震滑坡失稳特征,提出能够精确评价黄土地震滑坡稳定性的计算方法,可以为黄土地区防震减灾提供理论依据,也是今后研究的重点。
Abstract:The loess region is characterized by complex geomorphological patterns. This region is prone to frequent earthquakes with serious seismic landslide disasters. Loess seismic landslides are affected by a variety of factors, including the topography and geomorphology of loess slopes, stratigraphic lithology, dynamic responses, strength and dynamic characteristics of loess, and hydrogeological conditions. Current research on loess seismic landslides primarily involves laboratory experiments, physical and numerical simulations, field investigations, and remote sensing and monitoring techniques. The research focuses on the mechanisms, development characteristics, distribution, dynamic responses, and stability of loess seismic landslides. This paper reviews the current state of both domestic and international research on loess seismic landslides, introduces the pseudo-dynamic method that considers seismic wave propagation characteristics, and outlines future research prospects based on this method. By analyzing the mechanics mechanisms of loess seismic landslide, investigating the seismic liquefaction phenomena of loess landslides, and discussing the instability characteristics of these landslides, this study proposes a calculation method to accurately evaluate the stability of loess seismic landslides. This research can provide a theoretical basis for earthquake disaster prevention and mitigation in loess areas, and it represents a key focus for future studies.
-
Keywords:
- pseudo-dynamic method /
- loess /
- earthquake /
- landslide /
- slope
-
0. 引言
我国山区高填方机场具有平整范围大、跨越的地质单元多、周边限制因素多、地形地貌及地质条件复杂、施工环境恶劣、土石方量巨大、挖填高度大、填料性质复杂且可选余地小等特点[1 − 2],因此高填方是我国山区机场建设的重要特点。高填方边坡是机场的临空面,其稳定性是高填方机场成败的关键[3],是山区机场建设最为重要的核心技术问题之一。
重力式挡墙依靠墙体自重来抵抗土体侧压力,可采用浆砌块石或混凝土结构,具有就地取材、施工简单、经济性好、耐久性好、可靠性高、能显著节约土石方及征地面积等优势[4 − 5],是最为常用的边坡支挡结构[4, 6],但对于填方边坡其高度一般不超过10 m[7]。随着我国经济社会的发展,超高重力式挡墙在市政、水利、港口等行业中逐渐得到应用,例如贵阳某市政道路采用22 m高的重力式路肩墙[8],深圳市检察院培训基地采用了22 m高的扶壁式钢筋混凝土路肩墙[9],涪陵货运港采用了高约30 m的重力式路肩墙[10],宜兴抽水蓄能电站采用了92.3 m高堆石边坡加45.9 m高钢筋混凝土挡墙相结合的混合坝型[11 − 13]。然而,超高重力式挡墙在岩溶发育场地高填方工程中尚无应用案例报道。
岩溶发育场地工程地质及水文地质条件复杂,溶沟、溶槽、落水洞、地下溶洞、溶蚀裂隙等喀斯特地貌发育,岩体较为破碎,基覆界面起伏大,岩溶充填物及覆盖层物质组成及力学性质极不均匀,是典型的特殊不良地基[14 − 16],对各类建构筑物及场地稳定性造成较大影响[15 − 19]。山区机场高填方边坡高度高、填筑面积大,填方荷载大且作用复杂,对支挡结构强度及稳定性要求高[3, 20 − 21]。超高混凝土挡墙强度高,能承受较大的土压力,但其自重大、重心高、对沉降敏感,对地基强度及均匀性、墙身材料强度等要求高[12 − 13]。因此,在岩溶发育场地采用超高重力式挡墙进行高填方边坡支挡,可能存在地基承载力不足、不均匀沉降量大、墙身强度不足、边坡深部抗滑稳定性及挡墙稳定性问题突出等技术难题,技术难度大、风险高,限制了其工程应用。
重庆武隆仙女山机场南端西侧高填方区地形陡峻、岩体较破碎、地下水较丰富,覆盖型岩溶广泛发育,岩溶面积大、深度深,是典型的岩溶发育场地。受坡脚天然气管道限制,项目采用了最大高度为49.5 m(含岩溶混凝土换填高度)的超高重力式路堤墙方案,挡墙高度在国内外尚未见报道。为了解决深厚岩溶对高挡墙及高边坡稳定性的影响问题,通过物探、钻探及施工地质调查等方式详细查明了岩溶发育情况,通过数值模拟分析了不同岩溶换填深度下边坡破坏模式、边坡及挡墙稳定性、挡墙应力及变形等,确定了合理的岩溶换填深度。目前武隆机场已通航3年多,高挡墙及高边坡运行状态良好。理论及实践表明,采用局部换填方案改善了岩溶地基不均匀性,降低了挡墙应力集中效应,大幅提高了挡墙及边坡稳定性,解决了超高重力式挡墙在岩溶发育场地中的应用难点。研究成果对于高填方工程项目规划、高挡墙设计及施工、岩溶发育场地地基处理具有较大的参考价值。
1. 工程概况
1.1 机场概况
武隆机场飞行区等级为4C,跑道长
2800 m,机场标高为1743.69 m。机场土石方填方量约21.51×106 m3,挖方量约19.40×106 m3,最大垂直填方高度约65 m,填方边坡最大高度约107 m,是典型的高填方机场。机场位于大娄山期二级剥夷面上,总体地势南高北低,东高西低。南端和西侧紧靠台地边缘,为中等起伏台地地貌。受流水深切割的影响,沟谷两侧坡度较大,地形陡峻。研究区位于机场跑道南端西侧,为一条“V”字型冲沟上(图1),纵向平均坡度约25°,两侧沟壁坡度40°~75°,地形条件复杂。边坡坡顶垂直填方高度最大约57 m,在距离坡顶约127 m处有一条大致与跑道平行的天然气管线,边坡不具备放坡和反压条件,高填方边坡稳定性问题非常突出。经综合比选,采用超高重力式挡墙加高路堤方案。
1.2 高边坡概况
重力式挡墙地面以上最大净高为41.2 m,总高度最大49.5 m(含岩溶换填),墙身呈折线形,见图2(a),顶宽2.0 m,南侧墙体长58.8 m,北侧长73.3 m,采用C25混凝土结构。挡墙结构与衡重式挡墙类似,但中下部因地制宜,根据各处地形、基岩及岩溶情况不断变化,结构形式较为复杂。由于挡墙高度大,对地基承载力及均匀性要求高,对岩溶充填物采用开挖一定深度后回填混凝土,并与墙身整体浇筑的地基处理方案。挡墙中部设一道排水廊道和一排泄水孔。
挡墙后高填方边坡最高为65.71 m,按1∶1.4的坡比自然放坡,每15 m高设置2 m宽马道,见图2(b)。路堤范围内清除覆盖层至强风化基岩,再开挖抗滑台阶提高基覆界面强度。填料采用中风化灰岩或硅质岩破碎料。填筑区周边及墙趾处设截排水沟,马道上设一道混凝土种植槽兼做截水沟。
2. 工程地质条件
2.1 地层岩性
武隆机场区域上位于仙女山背斜北西翼,岩层呈单斜状,走向北东-南西,缓倾北西,倾向260°~300°,倾角5°~12°。场区基岩为二叠系上统吴家坪组,以灰岩和硅质岩为主,薄−中厚层,发育N35°E和N55°W两组陡倾节理,倾角多在70°以上。根据勘察资料及现场调查,强风化灰岩和硅质岩体结构破碎,中风化岩体结构为破碎−较破碎。
研究区基岩以灰岩和硅质岩为主,局部可见黏土岩夹层,产状为290°∠8°,薄−中厚层,强风化厚约5 m,岩体破碎,岩块强度高。硅质岩和黏土岩等相对隔水层出露地带发育股状流水,流量随季节变化较大,有利于岩溶发育[16, 22]。场区覆盖层厚0~11.3 m,包括耕植土、粉质黏土、碎石土以及天然气管线施工形成的素填土,性质差,见图2(b)。
2.2 岩溶发育情况
挡墙基础范围发现有5处岩溶,其中1号和2号岩溶体积很小,基础开挖即可清除,对工程无影响。3—5号岩溶位于挡墙基础中部,上部被第四系土覆盖,为覆盖型岩溶。岩溶整体形态呈椭圆形,尺寸分别为42 m×15 m、19 m×15 m、54 m×21 m,投影面积分别为463 m2、171 m2、802 m2,岩溶占挡墙基础面积的45%以上,见图2(a)。
为了查明岩溶形态及深度,对3—5号开展了钻探和物探,钻孔及物探典型剖面位置见图2(a)。3号岩溶区钻孔深17 m,上部9.1 m为岩溶充填物,其下为破碎灰岩;4号岩溶区钻孔深27.5 m,表层3.2 m为充填物,3.2~9.1 m为破碎灰岩,9.1~27.5 m为充填物,钻探未探明岩溶基底;5号岩溶区设置2个钻孔,30 m深钻孔全为充填物,未探明岩溶基底,32 m深钻孔上部27.6 m为充填物,其下为基岩;各岩溶充填物均为浅黄色含砂碎石土,含水量高,强度较低。物探结果综合分析表明(图3),上述3个岩溶形状不规则,底部埋深预计超过35 m,深部有岩溶通道互相连接。
现场施工中开挖发现(图4),岩溶发育区覆盖层较厚,基岩埋深5~9 m。岩溶类型主要为溶槽、溶沟及溶蚀裂隙,呈长条形展布,各岩溶通过溶蚀裂隙、溶洞等通道连接。溶沟、溶槽最大深度超过20 m,侧壁近直立,溶腔尺寸随深度增加呈现逐渐减小趋势。岩溶沟槽长轴大致呈N30°E方向,与场区陡倾节理方向基本一致,岩溶受岩体结构面控制。溶蚀沟槽内填充含水量高的浅黄色含砂碎石土,岩溶之间基岩顶部结构破碎。
3. 理论分析
3.1 计算方法
3.1.1 计算软件及参数
本工程地质结构复杂,挡墙结构与普通重力式挡墙有明显不同,填料、基岩及其结构面、挡墙结构及材料、岩溶、不同材料界面特性等都对边坡及挡墙稳定性产生影响,传统的极限平衡法难以准确确定破坏模式及稳定状态,需要开展数值模拟。
数值模拟采用Optum G2软件,是一款集极限分析和有限元分析于一体的岩土分析软件,具有操作简单、网格自动化程度高、支持有限元极限分析、收敛性强等特点,在复杂地质条件及复杂支挡结构破坏模式分析、可靠度计算等方面具有优势[23]。Optum G2可考虑基岩层面、不同材料接触面(包括挡墙与基岩、岩溶充填土、填料,基岩与填料等)力学性质,是本工程理想的分析软件。LI等[24]、YANG等[25]分别分析了武隆机场填料、填料与基岩界面力学特性,相关参数参照选取;基岩及结构面参数按经验参考《工程岩体分级标准》[26]选取,岩溶充填物参数选自勘察报告;挡墙与不同材料接触面参数参照GEO软件帮助文档选取;各计算参数见表1。
表 1 数值模拟计算参数Table 1. Summary of simulation model parameters岩土性质 本构模型 容重/(kN·m−3) 黏聚力/kPa 内摩擦角/(°) 弹性模量/MPa 泊松比 填料 摩尔库伦 22.5 50 35 60 0.30 高挡墙 线弹性 24.0 − − 28000 0.20 岩溶充填物 摩尔库伦 18.2 20 13 10 0.32 灰岩 摩尔库伦 26.5 200 40 10000 0.25 灰岩层面 摩尔库伦 − 60 25 − − 节理面 摩尔库伦 − 20 35 − − 挡墙-灰岩接触面 摩尔库伦 − 0 35 − − 挡墙-填料接触面 摩尔库伦 − 0 30 − − 挡墙-岩溶充填物接触面 摩尔库伦 − 0 15 − − 填料-灰岩接触面 摩尔库伦 − 45 35 − − 3.1.2 计算剖面及分析内容
根据工程实际情况,选取岩溶发育范围大、宽度宽(总宽约40 m)、岩溶深度深(最深约35 m)、挡墙总高度最高(含岩溶换填的总高度为49.5 m)、溶沟溶槽发育(共计4条)的剖面进行计算,详见图2(b)及图5。填筑体底部覆盖层需全部清除,因此按照第四系土清除后的原地面进行建模。模型设置位移边界条件,即底部为完全固定边,两侧为半固定边(水平方向固定、竖向可自由变形)。
数值模拟内容包括不同岩溶换填深度(图5)下边坡破坏模式、边坡整体稳定性、应力及变形,并提取挡墙墙背土压力计算挡墙稳定性。需要特别注意的是,填土为粗粒土,沉降大部分在施工过程中完成;采用的岩土本构模型属于理想弹塑性模型,不能考虑蠕变效应,因此填筑体变形计算结果仅供参考。
3.1.3 挡墙稳定性计算
当岩溶换填深度较大时,由于换填深度范围内回填的混凝土与挡墙一起整体浇筑,受溶槽间岩桥的阻挡(图5),挡墙不具备沿基底发生滑移的条件(沿填筑体及挡墙底可能发生的深部抗滑稳定性在整体稳定性中考虑),因此不需要验算挡墙抗滑移稳定性。
挡墙高度高,承受的土压力大,需要验算抗倾覆稳定性。墙背由5个面组成,第i面承担的土压力为
(图5), 到挡墙墙趾的水平、竖向距离为 、 。挡墙自重为G,其到挡墙墙趾的水平、竖向距离为 、 ,则挡墙抗倾覆稳定性按式(1)计算:(1) 3.2 破坏模式及整体稳定性
经典塑性力学上下限解可在不引入任何假定的前提下,通过上下限逼近边坡安全系数真实解[27]。通过对模型网格单元细分和基于剪切耗散的自适应加密,可较为准确地确定边坡破坏模式和整体安全系数。针对不同的岩溶换填深度(0~31 m)分别进行了模拟和分析。
3.2.1 破坏模式
当岩溶换填深度较浅时,边坡潜在破坏面由圆弧和多段折线组成,破坏模式较为复杂。圆弧面位于填筑体内部,折线面由基岩主动破裂面、基岩层面、挡墙底边(即挡墙与岩溶充填物之间界面)以及挡墙前被动破裂面组成,墙前被动区、挡墙底边界、基岩层面相对较为薄弱见图6(a)和图6(c)。此外,墙背下卸荷台边缘处存在第二破裂面,与已有研究一致[28]。
当岩溶换填深度大时,边坡潜在破坏面为填筑体内部的圆弧面见图6(b),破坏模式较为简单。岩溶换填深度的增加可有效消除基岩层面、岩溶等薄弱带存在的安全隐患,有利于边坡稳定性。经计算,当换填深度为15 m时,下限解对应的破坏模式为圆弧和多段折线组成,上限解为圆弧面,换填深度大于15 m时上下限解对应的破坏面均为沿着填筑体内的圆弧面。
3.2.2 整体稳定性
有限元上下限解计算表明,当换填深度低于15 m时,随着岩溶换填深度的增加,边坡整体安全系数大致呈线性增加;换填深度大于15 m时,安全系数不再变化,见图6(d)。上述结果与破坏模式分析结果一致,即换填深度大于15 m时,边坡最危险滑面为墙后填筑体内部的圆弧面,与挡墙无关,因此安全系数不会变化。
当换填深度不小于7 m时,边坡安全系数上下限解均大于1.35,可满足民航规范要求[29],因此岩溶换填深度不应小于7 m。
3.3 应力应变分析
采用弹塑性模型对边坡及挡墙应力进行了有限元分析(应力以拉为正、压为负),典型换填深度下的应力及塑性应变结果见图7所示,关键点(位置见图5)应力随换填深度的变化规律见图8(a)。
面坡坡脚处(A3点)是挡墙压应力的主要集中点,见图7(a)左、图7(b)左,随着换填深度的增加最大压应力逐渐减小。换填深度小于10 m时,压应力降低迅速;大于10 m时呈缓慢下降趋势。换填深度大于5 m时,最大压应力小于20 MPa,混凝土强度满足要求。
换填深度浅时,拉应力的主要集中点在挡墙基底溶槽之间的基岩接触区域见图7(a)中。由于岩溶充填物强度低,能承受的荷载很小,挡墙基底受力特点类似于多点竖向固定的简支梁,简支点需承受较大的弯拉应力。从体积塑性应变图也可看出,岩溶之间的基岩顶部出现大片塑性变形区域,与挡墙受力特点一致,见图7(a)右。当换填深度较大时,挡墙基础埋深大、与基岩接触面积大,应力通过基岩扩散后,挡墙底附加应力小,其受力与普通衡重式挡墙类似,因此拉应力集中点出现在卸荷台转角处,见图7(b)中。
挡墙换填深度与上、下卸荷台(A1、A2处)小主应力关系曲线可知,见图8(a),随换填深度增加卸荷台拉应力呈现增加趋势。这是由于随换填深度增加挡墙自重加大,限制了土体变形,土压力逐渐增加所致。经计算,换填深度大于7 m后,上卸荷台拉应力趋于稳定,稳定值约1.86 MPa,C25混凝土抗拉强度满足要求。
岩溶之间的基岩(A4)应力分析表明,随换填深度增加其应力逐渐减小,见图7及图8(a),有利于地基稳定性。
体积塑性应变计算表明,岩溶换填深度浅时,地基发生大面积塑性应变,见图7(a)右,地基稳定性差。换填深度加大后,仅在局部尖角处出现塑性变形,见图7(b)右。
3.4 变形分析
挡墙水平位移、边坡坡顶变形与换填深度的关系见图8(b)。随换填深度增加,挡墙水平位移、坡顶变形均逐渐减小,与经验及应力分析结果一致。当换填深度大于7 m时,挡墙及坡顶水平位移、坡顶竖向位移趋于稳定,稳定值分别约为6 mm、20 cm、50 cm。
3.5 土压力及挡墙稳定性
挡墙及地质条件复杂,采用有限元计算挡墙土压力。由于换填深度增加导致挡墙自重增加,加之埋深加大后地基水平抗力增加,挡墙水平位移逐渐减小,限制了土体变形,因此墙背与填土接触面的土压力整体呈现增加趋势,见图9(a)。当换填深度不小于7 m时,随换填深度增加,挡墙位移趋于稳定,见图8(b),因此土压力也趋于稳定,见图9(a)。
P5为墙背与基岩接触面压力,当不换填时挡墙水平位移很大(约36 cm),主要受力点位于挡墙中前缘,岩石压力较小;当换填深度较小时,挡墙水平位移大幅降低,由于岩溶充填物能承受荷载小,P5所在面作为支撑面承担较大的压力,因此P5呈现增加趋势;随着换填深度进一步增加,岩溶侧壁支撑作用逐渐加大,岩石压力逐渐减小,因此P5随后呈减小趋势。
根据土压力计算成果,对挡墙进行了抗倾覆稳定性计算,见图9(b)。由图可知,挡墙稳定性随换填深度增加呈现先减少后增加趋势。岩溶不换填时,挡墙水平位移大,土压力小,因此抗倾覆稳定性较大;换填深度小幅增加后,挡墙水平位移大幅降低,土压力增加较快,因此挡墙稳定性降低;换填深度进一步增加后,挡墙水平位移及土压力趋于稳定,但挡墙自重逐步增加,因此抗倾覆稳定性逐渐增加。经计算,挡墙抗倾覆稳定性均大于1.5,满足规范要求[7],抗倾覆稳定性不是控制性因素。
此外,随换填深度的增加,挡墙基础埋深加大,重心高度(图5中yG)逐渐降低,降低幅度呈先快后慢的趋势,见图9(b)。降低重心高度可进一步提高挡墙基础受力的均匀性,提高挡墙稳定性,降低偏心荷载对挡墙的不利影响。
4. 岩溶处理方案及实施效果
4.1 岩溶处理方案
根据理论计算,岩溶换填深度不小于7 m时,挡墙变形较小,边坡整体安全系数、挡墙抗倾覆稳定性、挡墙及地基强度均能满足规范要求,因此岩溶换填深度不宜小于7 m。
考虑到岩溶地基的不确定性,按照换填深度不低于10 m进行控制。当岩溶深度低于10 m时开挖至岩溶槽底,大于10 m时开挖10~20 m,岩溶上下尺寸变化小时开挖深度取大值。开挖至设计标高后,若底部仍存在充填物应灌浆处理以提高承载力。考虑到基岩岩体较破碎,对挡墙基础固结灌浆、岩溶边壁及基础设短锚钉的构造加强措施,锚钉与墙身连为一体。岩溶区域底部设置3 m厚底板,配双层钢筋网,进一步增加基础整体性。考虑到挡墙转角处存在明显的应力集中,特别是墙背卸荷台存在拉应力集中,在墙面附近配置钢筋,并在转角处对配筋适当加强。
4.2 施工过程
项目从2018年1月初开始施工,2019年5月中旬挡墙基础开挖与岩溶处理(含岩溶混凝土回填)基本完成。挡墙上部结构于2019年6月13日开始施工,2020年6月12日完成全部混凝土浇筑。墙身混凝土浇筑过程中,墙后土石方也逐步回填,2020年6月29日,墙后高填方边坡回填完成。
4.3 变形监测及运行情况
挡墙修建完成后,在墙顶布置了12个变形监测点,在填方边坡坡面布置了3个监测剖面共计8个监测点。此处选取边坡高度最高的BW04—BW06剖面及挡墙变形较大的BDW07点作为代表进行分析,各点位置如图10(a)所示。边坡监测从2020年6月16日开始,至2020年9月9日结束;高挡墙有三个监测点于2020年6月16日开始监测,其余开始于2020年7月5日,至2020年9月9日结束;各点变形监测成果如图10(b)所示。
监测结果表明:(1)在高填方边坡施工过程中,边坡变形增长较快;填筑体施工完成后,边坡变形较小,变形曲线很快趋于收敛,表明填筑体固结在填筑完成后很快完成。(2)填筑体最大水平位移约19.4 mm,最大沉降量约12.7 mm,填筑体施工完成后水平及竖向位移最大值均不大于4 mm,变形量及变形速率很小,边坡稳定性良好。(3)填筑体施工完成后,BDW07水平位移最大值约为3.3 mm,变形曲线收敛良好,高挡墙稳定性良好;挡墙变形有轻微的上下波动,预计是不同时间温差导致,与已有研究一致[11]。(4)高挡墙所有8个变形监测点数据表明,挡墙最大水平位移为3.3 mm,最大竖向位移为3.9 mm,与数值模拟结果基本吻合。
目前机场已通航3 a,在此期间武隆机场对高挡墙区域进行了持续的现场巡查,未见任何不良迹象,高边坡及高挡墙状态良好。
5. 结 论
(1)高挡墙范围内广泛发育覆盖型岩溶,面积占挡墙基础的45%以上,以溶槽、溶沟及溶蚀裂隙为主,长轴与场区陡倾结构面方向基本一致。岩溶最大深度大于30 m,全填充,侧壁陡倾,基岩地层顺倾、岩体较破碎,地基极不均匀,高挡墙及高边坡稳定性问题极为突出。根据工程实际采用超高重力式路堤墙及岩溶地基局部混凝土换填方案,可有效解决项目重大工程技术难题。
(2)岩溶处理深度浅时,边坡潜在破坏面由填筑体内部的圆弧面、岩体主动破裂面、墙底与岩溶充填物的接触面、基岩层面及墙前被动破坏面组成,且墙后出现第二破裂面,破坏模式复杂。处理深度大于15 m时,边坡潜在破坏面为墙后填筑体内的圆弧面,破坏模式简单。
(3)岩溶处理深度不小于7 m时,随换填深度的增加,墙背土压力、挡墙及填土变形、卸荷台拉应力及面墙墙脚压应力均趋于稳定,边坡整体安全系数满足规范要求,挡墙及地基应力不超材料强度,因此建议岩溶换填深度不小于7 m。
(4)当岩溶换填深度较大时,岩溶换填混凝土、岩溶间基岩与高挡墙形成统一的整体,极大提高了边坡及挡墙稳定性,实现了岩溶地基溶沟溶槽的合理化利用及不良地质的有效防治。
(5)工程监测显示,填筑体施工完成后边坡及高挡墙水平及竖向位移最大值均小于4 mm,变形曲线迅速收敛。监测及运营实践表明,边坡及挡墙稳定状态良好,岩溶局部换填方案可有效解决超高重力式挡墙在岩溶发育场地中的应用难点。
-
-
[1] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1 − 13. [TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1 − 13. (in Chinese with English abstract)] TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1 − 13. (in Chinese with English abstract)
[2] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)] TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)
[3] 黄润秋,李为乐. “5•12” 汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2008.12.028 HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028
[4] 国务院抗震救灾总指挥部. 汶川特大地震抗震救灾总结报告[R]. 2008. [State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)] State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)
[5] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.04.001 YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.04.001
[6] 张倬元. 工程地质分析原理[M]. 4版. 北京:地质出版社,2016. [ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing:Geological Publishing House,2016. (in Chinese)] ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing: Geological Publishing House, 2016. (in Chinese)
[7] 王椿镛,段永红,吴庆举,等. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,2016,38(4):511 − 549. [WANG Chunyong,DUAN Yonghong,WU Qingju,et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica,2016,38(4):511 − 549. (in Chinese with English abstract)] WANG Chunyong, DUAN Yonghong, WU Qingju, et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica, 2016, 38(4): 511 − 549. (in Chinese with English abstract)
[8] 孙金龙,徐辉龙,詹文欢,等. 南海北部陆缘地震带的活动性与发震机制[J]. 热带海洋学报,2012,31(3):40 − 47. [SUN Jinlong,XU Huilong,ZHAN Wenhuan,et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography,2012,31(3):40 − 47. (in Chinese with English abstract)] SUN Jinlong, XU Huilong, ZHAN Wenhuan, et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(3): 40 − 47. (in Chinese with English abstract)
[9] 徐杰,周本刚,计凤桔,等. 华北渤海湾盆地区大震发震构造的基本特征[J]. 地震地质,2012,34(4):618 − 636. [XU Jie,ZHOU Bengang,JI Fengju,et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area,North China[J]. Seismology and Geology,2012,34(4):618 − 636. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2012.04.008 XU Jie, ZHOU Bengang, JI Fengju, et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area, North China[J]. Seismology and Geology, 2012, 34(4): 618 − 636. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2012.04.008
[10] 陈祥熊,袁定强,吴长江. 台湾海峡南部Ms 7.3地震震源破裂特征及东南沿海地震形势分析[J]. 地震学报,1996(2):145 − 155. [CHEN Xiangxiong,YUAN Dingqiang,WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica,1996(2):145 − 155. (in Chinese with English abstract)] CHEN Xiangxiong, YUAN Dingqiang, WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica, 1996(2): 145 − 155. (in Chinese with English abstract)
[11] 王卫民,赵连锋,李娟,等. 四川汶川8.0级地震震源过程[J]. 地球物理学报,2008,51(5):1403 − 1410. [WANG Weimin,ZHAO Lianfeng,LI Juan,et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,2008,51(5):1403 − 1410. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0001-5733.2008.05.013 WANG Weimin, ZHAO Lianfeng, LI Juan, et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 2008, 51(5): 1403 − 1410. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2008.05.013
[12] 李锦轶,刘建峰,曲军峰,等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报,2019,35(10):2989 − 3016. [LI Jinyi,LIU Jianfeng,QU Junfeng,et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica,2019,35(10):2989 − 3016. (in Chinese with English abstract)] DOI: 10.18654/1000-0569/2019.10.04 LI Jinyi, LIU Jianfeng, QU Junfeng, et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 2019, 35(10): 2989 − 3016. (in Chinese with English abstract) DOI: 10.18654/1000-0569/2019.10.04
[13] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1 − 28. [PAN Guitang,XIAO Qinghui,LU Songnian,et al. Subdivision of tectonic units in China[J]. Geology in China,2009,36(1):1 − 28. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3657.2009.01.001 PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.01.001
[14] 李锦轶,张进,刘建峰,等. 中国大陆主要变形系统[J]. 地学前缘,2014,21(3):226 − 245. [LI Jinyi,ZHANG Jin,LIU Jianfeng,et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers,2014,21(3):226 − 245. (in Chinese with English abstract)] LI Jinyi, ZHANG Jin, LIU Jianfeng, et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers, 2014, 21(3): 226 − 245. (in Chinese with English abstract)
[15] 王涛,吴树仁,石菊松,等. 历史强震对渭河中游群发大型滑坡的诱发效应反演[J]. 地球学报,2015,36(3):352 − 360. [WANG Tao,WU Shuren,SHI Jusong,et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica,2015,36(3):352 − 360. (in Chinese with English abstract)] WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica, 2015, 36(3): 352 − 360. (in Chinese with English abstract)
[16] 徐岳仁,张伟恒,李文巧,等. 1556年华县地震同震黄土滑坡密集区的发现及意义[J]. 地震地质,2018,40(4):721 − 737. [XU Yueren,ZHANG Weiheng,LI Wenqiao,et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology,2018,40(4):721 − 737. (in Chinese with English abstract)] XU Yueren, ZHANG Weiheng, LI Wenqiao, et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology, 2018, 40(4): 721 − 737. (in Chinese with English abstract)
[17] 张振中. 黄土地震灾害预测[M]. 北京:地震出版社,1999. [ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing:Seismological Press,1999. (in Chinese)] ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing: Seismological Press, 1999. (in Chinese)
[18] 王亚强,王兰民,张小曳. GIS支持下的黄土高原地震滑坡区划研究[J]. 地理科学,2004,24(2):170 − 176. [WANG Yaqiang,WANG Lanmin,ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica,2004,24(2):170 − 176. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0690.2004.02.007 WANG Yaqiang, WANG Lanmin, ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica, 2004, 24(2): 170 − 176. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0690.2004.02.007
[19] 王海科. 重大工程影响下黄土渗透特性与入渗机理研究[D]. 西安:长安大学,2023. [WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an:Changan University,2023. (in Chinese with English abstract)] WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an: Changan University, 2023. (in Chinese with English abstract)
[20] 王兰民,蒲小武,陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾,2019(3):33 − 40. [WANG Lanmin,PU Xiaowu,CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction,2019(3):33 − 40. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2019.03.009 WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction, 2019(3): 33 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2019.03.009
[21] 王绅皓,谢婉丽,常一伦,等. 浸水作用下湿陷性黄土微观结构及分形特征研究[J]. 高校地质学报,2023,29(2):280 − 288. [WANG Shenhao,XIE Wanli,CHANG Yilun,et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities,2023,29(2):280 − 288. (in Chinese with English abstract)] WANG Shenhao, XIE Wanli, CHANG Yilun, et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities, 2023, 29(2): 280 − 288. (in Chinese with English abstract)
[22] 李维光,张继春. 地震作用下顺层岩质边坡稳定性的拟静力分析[J]. 山地学报,2007,25(2):184 − 189. [LI Weiguang,ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research,2007,25(2):184 − 189. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.02.009 LI Weiguang, ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research, 2007, 25(2): 184 − 189. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.02.009
[23] 邓东平,李亮,罗伟. 地震荷载作用下土钉支护边坡稳定性拟静力分析[J]. 岩土力学,2012,33(6):1787 − 1794. [DENG Dongping,LI Liang,LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics,2012,33(6):1787 − 1794. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.06.029 DENG Dongping, LI Liang, LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics, 2012, 33(6): 1787 − 1794. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.06.029
[24] 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报,2022,44(3):440 − 450. [LI Boliang,ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering,2022,44(3):440 − 450. (in Chinese with English abstract)] DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013 LI Boliang, ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440 − 450. (in Chinese with English abstract) DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013
[25] 赵振明,唐亚明,徐永,等. 山西大宁县典型滑坡体地貌特征与降雨和强震关系[J]. 地震工程学报,2020,42(6):1641 − 1649. [ZHAO Zhenming,TANG Yaming,XU Yong,et al. Geomorphic characteristics of typical landslides in Daning County,Shanxi Province,China,and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal,2020,42(6):1641 − 1649. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.06.1641 ZHAO Zhenming, TANG Yaming, XU Yong, et al. Geomorphic characteristics of typical landslides in Daning County, Shanxi Province, China, and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal, 2020, 42(6): 1641 − 1649. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.06.1641
[26] CLOSE U,MCCORMICK E. Where the mountains walked[J]. National Geographic Magazine,1922,41(5):445 − 464.
[27] 王兰民. 黄土动力学[M]. 北京:地震出版社,2003. [WANG Lanmin. Loess dynamics[M]. Beijing:Seismological Press,2003. (in Chinese)] WANG Lanmin. Loess dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
[28] 李昭淑,崔鹏. 1556年华县大地震的次生灾害[J]. 山地学报,2007(4):425 − 430. [LI Zhaoshu,CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science,2007(4):425 − 430. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.04.007 LI Zhaoshu, CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science, 2007(4): 425 − 430. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.04.007
[29] 吕艳,董颖,冯希杰,等. 1556年陕西关中华县特大地震地质灾害遗迹发育特征[J]. 工程地质学报,2014,22(2):300 − 308. [LYU Yan,DONG Ying,FENG Xijie,et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province,China[J]. Journal of Engineering Geology,2014,22(2):300 − 308. (in Chinese with English abstract)] LYU Yan, DONG Ying, FENG Xijie, et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province, China[J]. Journal of Engineering Geology, 2014, 22(2): 300 − 308. (in Chinese with English abstract)
[30] WANG T,WU S R,SHI J S,et al. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream[J]. Engineering Geology,2018,235:11 − 19. DOI: 10.1016/j.enggeo.2018.01.020
[31] 徐岳仁,杜朋,李文巧,等. 1718年通渭M 7.5地震滑坡特征分析——黄土高原历史强震触发滑坡数据库的应用[J]. 地球物理学报,2020,63(3):1235 − 1248. [XU Yueren,DU Peng,LI Wenqiao,et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides:Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics,2020,63(3):1235 − 1248. (in Chinese with English abstract)] DOI: 10.6038/cjg2020N0146 XU Yueren, DU Peng, LI Wenqiao, et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides: Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 1235 − 1248. (in Chinese with English abstract) DOI: 10.6038/cjg2020N0146
[32] ZHUANG Jianqi,PENG Jianbing,XU Chong,et al. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake,Northwest of China[J]. Geomorphology,2018,314:1 − 12. DOI: 10.1016/j.geomorph.2018.04.012
[33] 王磊,李孝波,苏占东,等. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J]. 地质力学学报,2019,25(4):536 − 543. [WANG Lei,LI Xiaobo,SU Zhandong,et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics,2019,25(4):536 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2019.25.04.052 WANG Lei, LI Xiaobo, SU Zhandong, et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 2019, 25(4): 536 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.04.052
[34] 冯卫,毕银强,唐亚明,等. 甘肃礼县至罗家堡断裂带沿线地质灾害分布规律及断层效应研究[J]. 自然灾害学报,2021,30(2):183 − 190. [FENG Wei,BI Yinqiang,TANG Yaming,et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters,2021,30(2):183 − 190. (in Chinese with English abstract)] FENG Wei, BI Yinqiang, TANG Yaming, et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters, 2021, 30(2): 183 − 190. (in Chinese with English abstract)
[35] 王兰民,吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报,2013,35(3):401 − 412. [WANG Lanmin,WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal,2013,35(3):401 − 412. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0401 WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401
[36] 许冲,吴熙彦,徐锡伟. 黄土高原及邻区的地震滑坡[J]. 工程地质学报,2016,26(增刊):260 − 273. [XU Chong,WU Xiyan,XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology,2016,26(Sup):260 − 273. (in Chinese with English abstract)] XU Chong, WU Xiyan, XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 2016, 26(Sup): 260 − 273. (in Chinese with English abstract)
[37] 黄雅虹. 地震作用下黄土斜坡的稳定性分析预测[J]. 西北地震学报,1998(3):53 − 59. [HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal,1998(3):53 − 59. (in Chinese with English abstract)] HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal, 1998(3): 53 − 59. (in Chinese with English abstract)
[38] 马学宁. 地震作用下黑方台黄土滑坡稳定性分析及治理措施[J]. 湖南工程学院学报(自然科学版),2013,23(1):77 − 81. [MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition),2013,23(1):77 − 81. (in Chinese with English abstract)] MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2013, 23(1): 77 − 81. (in Chinese with English abstract)
[39] 张振中,郑恒利,王兰民. 黄土随机振动强度参数在地震滑坡分析中的应用[J]. 西北地震学报,1991(3):45 − 49. [ZHANG Zhenzhong,ZHEGN Hengli,WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal,1991(3):45 − 49. (in Chinese with English abstract)] ZHANG Zhenzhong, ZHEGN Hengli, WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal, 1991(3): 45 − 49. (in Chinese with English abstract)
[40] 邹谨敞,邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震,1996(1):1 − 6. [ZHOU Jinchang,ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake,1996(1):1 − 6. (in Chinese with English abstract)] ZHOU Jinchang, ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 1996(1): 1 − 6. (in Chinese with English abstract)
[41] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3 − 13. [XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):3 − 13. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2001.01.002 XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3 − 13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002
[42] 陈存礼,杨鹏,何军芳. 饱和击实黄土的动力特性研究[J]. 岩土力学,2007,28(8):1551 − 1556. [CHEN Cunli,YANG Peng,HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics,2007,28(8):1551 − 1556. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.08.005 CHEN Cunli, YANG Peng, HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics, 2007, 28(8): 1551 − 1556. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.08.005
[43] CHEN Huie,JIANG Yaling,NIU Cencen,et al. Dynamic characteristics of saturated loess under different confining pressures:A microscopic analysis[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):931 − 944. DOI: 10.1007/s10064-017-1101-9
[44] WANG Qian,WANG Yan,MA Wenguo,et al. Dynamic characteristics of post-cyclic saturated loess[J]. Applied Sciences,2022,13(1):306. DOI: 10.3390/app13010306
[45] CAREY J M,MCSAVENEY M J,PETLEY D N. Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading[J]. Landslides,2017,14(3):789 − 804. DOI: 10.1007/s10346-016-0746-y
[46] WU Zhijian,XU Shiming,CHEN Dawei,et al. An experimental study of the influence of structural parameters on dynamic characteristics of loess[J]. Soil Dynamics and Earthquake Engineering,2020,132:106067. DOI: 10.1016/j.soildyn.2020.106067
[47] WANG Ping,WANG Jun,CHAI Shaofeng,et al. Experimental study on dynamic strength regional characteristics of undisturbed loess based on the mohr-coulomb failure criterion[J]. Advanced Materials Research,2013,700:111 − 118. DOI: 10.4028/www.scientific.net/AMR.700.111
[48] QIAO Feng,CHANG Chaoyu,BO Jingshan,et al. Study on the dynamic characteristics of loess[J]. Sustainability,2023,15(6):5428. DOI: 10.3390/su15065428
[49] WEI Tingting,WU Zhijian,CHEN Yanping,et al. Three-dimensional characterization and quantitative research of Malan loess microstructure under seismic loading[J]. Frontiers in Earth Science,2023,10:1106168. DOI: 10.3389/feart.2022.1106168
[50] WANG N Q,LIU X L,LUO,et al. Study on Dynamic Strength Characteristics of Malan Loess. Applied Mechanics and Materials[C]. 2nd International Conference on Civil Engineering,Architecture and Building Materials (CEABM 2012),2012,Yantai,PEOPLES R CHINA.
[51] WANG N Q,LIU X L,BO H,et al. Test of Dynamic Strength Characteristics of Lishi Loess. Applied Mechanics and Materials [C]. International Conference on Sensors,Measurement and Intelligent Materials (ICSMIM 2012),2012,Guilin,PEOPLES R CHINA.
[52] LIU Wei,WANG Qian,LIN Gaochao,et al. Effect of pre-dynamic loading on dynamic liquefaction of undisturbed loess[J]. Bulletin of Earthquake Engineering,2020,18(13):5779 − 5806. DOI: 10.1007/s10518-020-00917-w
[53] WANG Haojie,SUN Ping,LIU Enlong,et al. Dynamic properties of Tianshui saturated remolded loess:A laboratory study[J]. Engineering Geology,2020,272:105570. DOI: 10.1016/j.enggeo.2020.105570
[54] CHENG Xuansheng,LI Xinlei,NIE Jun,et al. Research on the dynamic parameters of loess[J]. Geotechnical and Geological Engineering,2019,37(1):77 − 93. DOI: 10.1007/s10706-018-0592-x
[55] 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展[J]. 防灾科技学院学报,2021,23(2):46 − 53. [YAN Lingyong,LI Xiaobo,OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention,2021,23(2):46 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2021.02.006 YAN Lingyong, LI Xiaobo, OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention, 2021, 23(2): 46 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2021.02.006
[56] 刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安:长安大学,2012. [LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an:Changan University,2012. (in Chinese with English abstract)] LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an: Changan University, 2012. (in Chinese with English abstract)
[57] CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert-Huang transform method using a large-scale shaking table test[J]. Engineering Geology,2022,302:106630. DOI: 10.1016/j.enggeo.2022.106630
[58] 王明轩,倪万魁. 喜家湾地震黄土滑坡形成机理[J]. 华北地震科学,2018,36(1):54 − 58. [WANG Mingxuan,NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences,2018,36(1):54 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-1375.2018.01.009 WANG Mingxuan, NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences, 2018, 36(1): 54 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1375.2018.01.009
[59] 徐舜华,吴志坚,孙军杰,等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 地震工程学报,2013,35(3):471 − 476. [XU Shunhua,WU Zhijian,SUN Junjie,et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal,2013,35(3):471 − 476. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0471 XU Shunhua, WU Zhijian, SUN Junjie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471 − 476. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0471
[60] 王鼐,王兰民. 河谷地区黄土地震滑坡特征与影响因素分析[J]. 岩土工程学报,2013,35(增刊1):434 − 438. [WANG Nai,WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 1):434 − 438. (in Chinese with English abstract)] WANG Nai, WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 434 − 438. (in Chinese with English abstract)
[61] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)] WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)
[62] 段玉石,薄景山,彭达,等. 地震诱发黄土滑坡分布特征分析——以1920年海原特大地震为例[J]. 应用基础与工程科学学报,1 − 17. [DUAN Yushi,BO Jingshan,PENG Da,et al. Distribution characteristics of earthquake-induced loess landslides:A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering,1 − 17. (in Chinese with English abstract)] DUAN Yushi, BO Jingshan, PENG Da, et al. Distribution characteristics of earthquake-induced loess landslides: A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering, 1 − 17. (in Chinese with English abstract)
[63] 钱紫玲. 基于统计模型的黄土地震滑坡危险性评价[D]. 兰州:中国地震局兰州地震研究所,2023. [QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2023. (in Chinese with English abstract)] QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2023. (in Chinese with English abstract)
[64] 程小杰,杨为民,向灵芝,等. 基于Newmark模型的天水市北山地震黄土滑坡危险性评价[J]. 地质力学学报,2017,23(2):296 − 305. [CHENG Xiaojie,YANG Weimin,XIANG Lingzhi,et al. Risk assessment of seismic loess landslide based on newmark model in Beishan,Tianshui City[J]. Journal of Geomechanics,2017,23(2):296 − 305.(in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.02.013 CHENG Xiaojie, YANG Weimin, XIANG Lingzhi, et al. Risk assessment of seismic loess landslide based on newmark model in Beishan, Tianshui City[J]. Journal of Geomechanics, 2017, 23(2): 296 − 305.(in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.02.013
[65] 邓龙胜. 强震作用下黄土边坡的动力响应机理和动力稳定性研究[D]. 西安:长安大学,2010. [DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an:Changan University,2010. (in Chinese with English abstract)] DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)
[66] 赵文琛. 强震作用下黄土斜坡动力响应特征与稳定性分析[D]. 兰州:中国地震局兰州地震研究所,2016. [ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2016. (in Chinese with English abstract)] ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2016. (in Chinese with English abstract)
[67] 车福东,王涛,辛鹏,等. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报,2020,39(12):1981 − 1992. [CHE Fudong,WANG Tao,XIN Peng,et al. Dynamic response and deformation of loess landslide under near and far earthquakes:A case study of Liping Village landslide in Tianshui earthquake area,Gansu Province[J]. Geological Bulletin of China,2020,39(12):1981 − 1992. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2020.12.012 CHE Fudong, WANG Tao, XIN Peng, et al. Dynamic response and deformation of loess landslide under near and far earthquakes: A case study of Liping Village landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981 − 1992. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2020.12.012
[68] 常晁瑜,徐久欢,薄景山,等. 基于颗粒流的地震液化型滑坡运动学特征分析[J]. 地震工程与工程振动,2022,42(6):153 − 161. [CHANG Chaoyu,XU Jiuhuan,BO Jingshan,et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):153 − 161. ((in Chinese with English abstract)] CHANG Chaoyu, XU Jiuhuan, BO Jingshan, et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 153 − 161. ((in Chinese with English abstract)
[69] 张子东,张晓超,任鹏,等. 非饱和黄土动力液化研究 ——以党家岔滑坡为例[J]. 地震工程学报,2021,43(5):1228 − 1237. [ZHANG Zidong,ZHANG Xiaochao,REN Peng,et al. Dynamic liquefaction of unsaturated loess:A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal,2021,43(5):1228 − 1237. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1228 ZHANG Zidong, ZHANG Xiaochao, REN Peng, et al. Dynamic liquefaction of unsaturated loess: A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal, 2021, 43(5): 1228 − 1237. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1228
[70] 吴志坚,陈豫津,王谦,等. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报,2019,41(S2):165 − 168. [WU Zhijian,CHEN Yujin,WANG Qian,et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering,2019,41(S2):165 − 168. (in Chinese with English abstract)] DOI: 10.11779/CJGE2019S2042 WU Zhijian, CHEN Yujin, WANG Qian, et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165 − 168. (in Chinese with English abstract) DOI: 10.11779/CJGE2019S2042
[71] 张晓超,裴向军,张茂省,等. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报,2018,26(5):1219 − 1226. [ZHANG Xiaochao,PEI Xiangjun,ZHANG Maosheng,et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake:A case study in Dangjiacha,Ningxia Province[J]. Journal of Engineering Geology,2018,26(5):1219 − 1226. (in Chinese with English abstract)] ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake: A case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219 − 1226. (in Chinese with English abstract)
[72] 国家地震局兰州地震研究所宁夏回族自治区地震队. 一九二〇年海原大地震[M]. 北京:地震出版社,1980. [Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing:Seismological Press,1980. (in Chinese)] Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
[73] 彭建兵,王启耀,门玉明,等. 黄土高原滑坡灾害[M]. 北京:科学出版社,2019. [PENG Jianbing,WANG Qiyao,MEN Yuming,et al. Landslide disaster in Loess Plateau[M]. Beijing:Science Press,2019. (in Chinese)] PENG Jianbing, WANG Qiyao, MEN Yuming, et al. Landslide disaster in Loess Plateau[M]. Beijing: Science Press, 2019. (in Chinese)
[74] 张振中,张冬丽,刘红玫. 黄土震陷灾害典型震例的综合研究(英文)[J]. 西北地震学报,2005,27(1):36 − 41. [ZHANG Zhenzhong,ZHANG Dongli,LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal,2005,27(1):36 − 41. (in English with Chinese abstract)] ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal, 2005, 27(1): 36 − 41. (in English with Chinese abstract)
[75] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1 − 19. [WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1 − 19. (in Chinese with English abstract)] DOI: 10.11779/CJGE202001001 WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1 − 19. (in Chinese with English abstract) DOI: 10.11779/CJGE202001001
[76] SHANG H,NI W K,NIU F J,et al. Development characteristics and causes of seismic loess landslides in north-west China [J]. Disaster Advances,2013,6:24-38.
[77] ZHONG Xiumei,XU Xiaowei,CHEN Wenkai,et al. Characteristics of loess landslides triggered by the 1927 Mw8.0 earthquake that occurred in Gulang County,Gansu Province,China[J]. Frontiers in Environmental Science,2022,10:973262. DOI: 10.3389/fenvs.2022.973262
[78] LI Xiaobo,YAN Lingyong,WU Yiwen,et al. Distribution and characteristics of loess landslides induced by the 1654 Tianshui earthquake,Northwest of China[J]. Landslides,2023,20(12):2775 − 2790. DOI: 10.1007/s10346-023-02128-1
[79] 陈永明,石玉成,刘红玫,等. 黄土地区地震滑坡的分布特征及其影响因素分析[J]. 中国地震,2005,21(2):235 − 243. [CHEN Yongming,SHI Yucheng,LIU Hongmei,et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China,2005,21(2):235 − 243. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4683.2005.02.011 CHEN Yongming, SHI Yucheng, LIU Hongmei, et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China, 2005, 21(2): 235 − 243. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4683.2005.02.011
[80] 王兰民,郭安宁,王平,等. 1920年海原大地震震害特征与启示[J]. 城市与减灾,2020(6):43 − 53. [WANG Lanmin,GUO Anning,WANG Ping,et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction,2020(6):43 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2020.06.007 WANG Lanmin, GUO Anning, WANG Ping, et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction, 2020(6): 43 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2020.06.007
[81] 王尚,梁庆国,乔向进,等. 基于小波包和反应谱的黄土边坡动力特征研究[J]. 地震工程学报,2023,45(1):94 − 102. [WANG Shang,LIANG Qingguo,QIAO Xiangjin,et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal,2023,45(1):94 − 102. (in Chinese with English abstract)] WANG Shang, LIANG Qingguo, QIAO Xiangjin, et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal, 2023, 45(1): 94 − 102. (in Chinese with English abstract)
[82] 张兴臣,梁庆国,孙文,等. 地震作用下黄土边坡动力响应的时频特征分析[J]. 地震工程学报,2022,44(5):1090 − 1099. [ZHANG Xingchen,LIANG Qingguo,SUN Wen,et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal,2022,44(5):1090 − 1099. (in Chinese with English abstract)] ZHANG Xingchen, LIANG Qingguo, SUN Wen, et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal, 2022, 44(5): 1090 − 1099. (in Chinese with English abstract)
[83] 张彬,邵帅,邵生俊,等. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报,2023,45(4):869 − 875. [ZHANG Bin,SHAO Shuai,SHAO Shengjun,et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):869 − 875. (in Chinese with English abstract)] ZHANG Bin, SHAO Shuai, SHAO Shengjun, et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869 − 875. (in Chinese with English abstract)
[84] 孙文,梁庆国,乔向进,等. 不同失稳形态黄土边坡的动力响应研究[J]. 铁道学报,2022,44(6):123 − 130. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society,2022,44(6):123 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-8360.2022.06.015 SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society, 2022, 44(6): 123 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-8360.2022.06.015
[85] 孙文,梁庆国,乔向进,等. 黄土边坡动力失稳的振动台试验研究[J]. 兰州交通大学学报,2021,40(2):15 − 22. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University,2021,40(2):15 − 22. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4373.2021.02.003 SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 15 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4373.2021.02.003
[86] 田欣欣,严武建,郑海忠,等. 地震作用下含暗穴高边坡黄土路基稳定性分析[J]. 地震工程学报,2022,44(1):72 − 78. [TIAN Xinxin,YAN Wujian,ZHENG Haizhong,et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal,2022,44(1):72 − 78. (in Chinese with English abstract)] TIAN Xinxin, YAN Wujian, ZHENG Haizhong, et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal, 2022, 44(1): 72 − 78. (in Chinese with English abstract)
[87] 万金侠,施艳秋,陈小云. 基于动土压力响应特性的黄土滑坡振动台试验研究[J]. 防灾减灾工程学报,2021,41(3):586 − 593. [WAN Jinxia,SHI Yanqiu,CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):586 − 593. (in Chinese with English abstract)] WAN Jinxia, SHI Yanqiu, CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 586 − 593. (in Chinese with English abstract)
[88] 邵帅,邵生俊,李宁,等. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报,2021,43(2):245 − 253. [SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):245 − 253. (in Chinese with English abstract)] SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245 − 253. (in Chinese with English abstract)
[89] 施艳秋,谢显龙,张玘恺,等. 基于小波变换的黄土滑坡动土压力响应及其频谱特性研究[J]. 岩石力学与工程学报,2020,39(12):2570 − 2581. [SHI Yanqiu,XIE Xianlong,ZHANG Qikai,et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2570 − 2581. (in Chinese with English abstract)] SHI Yanqiu, XIE Xianlong, ZHANG Qikai, et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2570 − 2581. (in Chinese with English abstract)
[90] 陈金昌,王兰民,王平,等. 基于振动台试验的纯黄土边坡动力响应研究[J]. 地震工程学报,2020,42(2):529 − 535. [CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal,2020,42(2):529 − 535. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.02.529 CHEN Jinchang, WANG Lanmin, WANG Ping, et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 2020, 42(2): 529 − 535. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.02.529
[91] 夏坤,董林,蒲小武,等. 黄土塬地震动响应特征分析[J]. 岩土力学,2020,41(1):295 − 304. [XIA Kun,DONG Lin,PU Xiaowu,et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics,2020,41(1):295 − 304. (in Chinese with English abstract)] XIA Kun, DONG Lin, PU Xiaowu, et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics, 2020, 41(1): 295 − 304. (in Chinese with English abstract)
[92] 张泽林,吴树仁,王涛,等. 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学,2018,39(7):2403 − 2412. [ZHANG Zelin,WU Shuren,WANG Tao,et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics,2018,39(7):2403 − 2412. (in Chinese with English abstract)] ZHANG Zelin, WU Shuren, WANG Tao, et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics, 2018, 39(7): 2403 − 2412. (in Chinese with English abstract)
[93] 芮雪莲,裴向军,张晓超. 强震触发黄土滑坡发生机制试验[J]. 实验室研究与探索,2016,35(1):23 − 26. [RUI Xuelian,PEI Xiangjun,ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory,2016,35(1):23 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7167.2016.01.007 RUI Xuelian, PEI Xiangjun, ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory, 2016, 35(1): 23 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7167.2016.01.007
[94] 张晓超,黄润秋,许模,等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学,2014,35(3):801 − 810. [ZHANG Xiaochao,HUANG Runqiu,XU Mo,et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics,2014,35(3):801 − 810. (in Chinese with English abstract)] ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801 − 810. (in Chinese with English abstract)
[95] PEI Xiangjun,ZHANG Xiaochao,GUO Bin,et al. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology,2017,223:23 − 30. DOI: 10.1016/j.enggeo.2017.03.016
[96] 胡成,卢坤林,朱大勇,等. 三维边坡拟静力抗震稳定性分析[J]. 岩石力学与工程学报,2011,30(增刊1):2904 − 2912. [HU Cheng,LU Kunlin,ZHU Dayong,et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011,30(Sup 1):2904 − 2912. (in Chinese with English abstract)] HU Cheng, LU Kunlin, ZHU Dayong, et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(Sup 1): 2904 − 2912. (in Chinese with English abstract)
[97] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHEGN Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)] ZHEGN Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)
[98] 刘春玲,祁生文,童立强,等. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报,2004(16):2730 − 2733. [LIU Chunling,QI Shengwen,TONG Liqiang,et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering,2004(16):2730 − 2733. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2004.16.014 LIU Chunling, QI Shengwen, TONG Liqiang, et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(16): 2730 − 2733. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2004.16.014
[99] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2):139 − 160. DOI: 10.1680/geot.1965.15.2.139
[100] STEEDMAN R S,ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall[J]. Géotechnique,1990,40(1):103 − 112.
[101] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010 LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010
[102] KARRAY M,HUSSIEN M N,DELISLE M C,et al. Framework to assess pseudo-static approach for seismic stability of clayey slopes[J]. Canadian Geotechnical Journal,2018,55(12):1860 − 1876. DOI: 10.1139/cgj-2017-0383
[103] MENDEZ B,TASTAN E O,GUTIERREZ J. Performance-based slope stability analysis and the pseudo-static factor of safety[C]//Geotechnical Frontiers 2017. Orlando,Florida. Reston,VA:American Society of Civil Engineers,2017,278:390 − 399.
[104] UTILI S,ABD A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(5):785 − 806. DOI: 10.1002/nag.2498
[105] TERZAGHI K. Mechanisms of landslide[M]. Engineering Geology (Berdey) volume,1950,Geological Society of America.
[106] KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.
[107] SEED H B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Géotechnique,1979,29(3):215 − 263.
[108] SEED H B. Stability of earth and rock-fill dams during earthquake[J]. Embankment-Dam Eng. 1973. Casagrande.
[109] 中华人民共和国国家经济贸易委员会. 水工建筑物抗震设计规范:DL 5073—2000[S]. 北京:中国电力出版社,2001. [State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures:DL 5073—2000[S]. Beijing:China Electric Power Press,2001. (in Chinese)] State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures: DL 5073—2000[S]. Beijing: China Electric Power Press, 2001. (in Chinese)
[110] 中华人民共和国国家标准编写小组. 铁路工程抗震设计规范:GB 50111—2006[S]. 北京:中国计划出版社, 2009. [The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering:GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)] The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering: GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)
[111] 中华人民共和国交通部. 公路工程抗震设计规范:JTJ 004—1989[S]. 北京:人民交通出版社,1990. [Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering:JTJ 004—1989[S]. Beijing:China Communications Press,1990. (in Chinese)] Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering: JTJ 004—1989[S]. Beijing: China Communications Press, 1990. (in Chinese)
[112] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范(2016版):GB 50011—2010[S]. 北京: 中国建筑工业出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition):GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition): GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
[113] 梁承龙,刘芳. 地震作用下双层土裂缝边坡稳定性分析[J]. 地震工程学报,2022,44(5):1050 − 1058. [LIANG Chenglong,LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal,2022,44(5):1050 − 1058. (in Chinese with English abstract)] LIANG Chenglong, LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal, 2022, 44(5): 1050 − 1058. (in Chinese with English abstract)
[114] FARSHIDFAR N, KESHAVARZ A, MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method[J]. Arabian Journal of Geosciences,2020,13(7):283.
[115] 袁中夏,李德鹏,叶帅华. 地震和降雨条件下黄土高填方边坡稳定性分析[J]. 兰州理工大学学报,2022,48(4):119 − 125. [YUAN Zhongxia,LI Depeng,YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology,2022,48(4):119 − 125. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-5196.2022.04.018 YUAN Zhongxia, LI Depeng, YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 119 − 125. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-5196.2022.04.018
[116] 李旭东,王平,王丽丽,等. 强震作用下坡顶建筑荷载对边坡稳定性影响研究[J]. 地震工程学报,2021,43(5):1220 − 1227. [LI Xudong,WANG Ping,WANG Lili,et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal,2021,43(5):1220 − 1227. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1220 LI Xudong, WANG Ping, WANG Lili, et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal, 2021, 43(5): 1220 − 1227. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1220
[117] 刘畅,张平松,杨为民,等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质,2020,53(4):176 − 185. [LIU Chang,ZHANG Pingsong,YANG Weimin,et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake,Tianshui,Gansu[J]. Northwestern Geology,2020,53(4):176 − 185. (in Chinese with English abstract)] LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake, Tianshui, Gansu[J]. Northwestern Geology, 2020, 53(4): 176 − 185. (in Chinese with English abstract)
[118] 陈亚光. 宝兰客专天水市王家墩滑坡地震稳定性分析[J]. 地震工程学报,2019,41(6):1607 − 1614. [CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal,2019,41(6):1607 − 1614. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.06.1607 CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal, 2019, 41(6): 1607 − 1614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.06.1607
[119] 闫东晗,薄景山,李孝波,等. 海原特大地震红土川滑坡拟静力强度折减法模拟分析[J]. 科学技术与工程,2019,19(28):50 − 55. [YAN Donghan,BO Jingshan,LI Xiaobo,et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering,2019,19(28):50 − 55. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.006 YAN Donghan, BO Jingshan, LI Xiaobo, et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering, 2019, 19(28): 50 − 55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.006
[120] 孙萍,祝恩珍,张帅,等. 地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J]. 现代地质,2019,33(1):218 − 226. [SUN Ping,ZHU Enzhen,ZHANG Shuai,et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area,Gansu Province[J]. Geoscience,2019,33(1):218 − 226.(in Chinese with English abstract)] SUN Ping, ZHU Enzhen, ZHANG Shuai, et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area, Gansu Province[J]. Geoscience, 2019, 33(1): 218 − 226.(in Chinese with English abstract)
[121] ZENG X,STEEDMAN R S. On the behaviour of quay walls in earthquakes[J]. Géotechnique,1993,43(3):417 − 431.
[122] CHOUDHURY D,NIMBALKAR S. Seismic passive resistance by pseudo-dynamic method[J]. Géotechnique,2005,55(9):699 − 702.
[123] CHOUDHURY D,NIMBALKAR S S. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical & Geological Engineering,2006,24(5):1103 − 1113.
[124] CHOUDHURY D,NIMBALKAR S. Seismic rotational displacement of gravity walls by pseudo-dynamic method:Passive case[J]. Soil Dynamics and Earthquake Engineering,2007,27(3):242 − 249. DOI: 10.1016/j.soildyn.2006.06.009
[125] BAZIAR M H,SHAHNAZARI H,RABETI MOGHADAM M. Sliding stability analysis of gravity retaining walls using the pseudo-dynamic method[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2013,166(4):389 − 398. DOI: 10.1680/geng.10.00036
[126] YAN Zuofei,DENG Yahong,HE Jia,et al. A pseudodynamic approach of seismic active pressure on retaining walls based on a curved rupture surface[J]. Mathematical Problems in Engineering,2020,2020:6462034.
[127] GANESH R,KHUNTIA S,SAHOO J P. Seismic uplift capacity of shallow strip anchors:A new pseudo-dynamic upper bound limit analysis[J]. Soil Dynamics and Earthquake Engineering,2018,109:69 − 75. DOI: 10.1016/j.soildyn.2018.03.004
[128] ZHAO Lianheng,YU Chenghao,LI Liang,et al. Rock slope reliability analysis using Barton-Bandis failure criterion with modified pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2020,139:106310. DOI: 10.1016/j.soildyn.2020.106310
[129] MUNWAR BASHA B,SIVAKUMAR BABU G L. Reliability assessment of internal stability of reinforced soil structures:A pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2010,30(5):336 − 353. DOI: 10.1016/j.soildyn.2009.12.007
[130] BASHA B M,BABU G L S. Seismic reliability assessment of internal stability of reinforced soil walls using the pseudo-dynamic method[J]. Geosynthetics International,2011,18(5):221 − 241. DOI: 10.1680/gein.2011.18.5.221
[131] ZHOU X P,CHENG H. Stability analysis of three-dimensional seismic landslides using the rigorous limit equilibrium method[J]. Engineering Geology,2014,174:87 − 102. DOI: 10.1016/j.enggeo.2014.03.009
[132] CHAKRABORTY D,CHOUDHURY D. Pseudo-static and pseudo-dynamic stability analysis of tailings dam under seismic conditions[J]. Proceedings of the National Academy of Sciences,India Section A:Physical Sciences,2013,83(1):63 − 71. DOI: 10.1007/s40010-013-0069-5
[133] 阮晓波,孙树林,刘文亮. 锚固岩石边坡地震稳定性拟动力分析[J]. 岩土力学,2013,34(增刊1):293 − 300. [RUAN Xiaobo,SUN Shulin,LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics,2013,34(Sup 1):293 − 300. (in Chinese with English abstract)] RUAN Xiaobo, SUN Shulin, LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 293 − 300. (in Chinese with English abstract)
[134] RUAN Xiaobo,SUN Shulin,LIU Wenliang. Effect of the amplification factor on seismic stability of expanded municipal solid waste landfills using the pseudo-dynamic method[J]. Journal of Zhejiang University SCIENCE A,2013,14(10):731 − 738. DOI: 10.1631/jzus.A1300041
[135] ZHOU Xiaoping,QIAN Qihu,CHENG Hao,et al. Stability analysis of two-dimensional landslides subjected to seismic loads[J]. Acta Mechanica Solida Sinica,2015,28(3):262 − 276. DOI: 10.1016/S0894-9166(15)30013-6
[136] 卢玉林,薄景山,陈晓冉,等. 考虑渗流和地震时的砂土边坡稳定性计算[J]. 重庆大学学报,2017,40(1):65 − 75. [LU Yulin,BO Jingshan,CHEN Xiaoran,et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University,2017,40(1):65 − 75. (in Chinese with English abstract)] LU Yulin, BO Jingshan, CHEN Xiaoran, et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University, 2017, 40(1): 65 − 75. (in Chinese with English abstract)
[137] 邓亚虹,徐召,孙科,等. 一种考虑波动效应的拟动力地震边坡稳定性分析方法[J]. 地球科学与环境学报,2019,41(5):623 − 630. [DENG Yahong,XU Zhao,SUN Ke,et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment,2019,41(5):623 − 630. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-6561.2019.05.010 DENG Yahong, XU Zhao, SUN Ke, et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 623 − 630. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2019.05.010
[138] 杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)] YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)
[139] 蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et,al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)] JIANG Qingjiang, DENG Yahong, YANG Nan, et, al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)
[140] 宋桂锋,杜江梅,柯鉴,等. 基于拟动力法的顺层岩质边坡稳定性极限分析[J]. 地震工程学报,2019,41(4):931 − 938. [SONG Guifeng,DU Jiangmei,KE Jian,et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal,2019,41(4):931 − 938. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.04.931 SONG Guifeng, DU Jiangmei, KE Jian, et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal, 2019, 41(4): 931 − 938. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.04.931
[141] BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering,2014,32(2):561 − 576. DOI: 10.1007/s10706-014-9734-y
[142] CHANDA N,GHOSH S,PAL M. Seismic stability of slope using modified pseudo-dynamic method[J]. International Journal of Geotechnical Engineering,2019,13(6):548 − 559. DOI: 10.1080/19386362.2017.1372056
[143] PAIN A,CHOUDHURY D,BHATTACHARYYA S K. Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure[J]. Geotextiles and Geomembranes,2017,45(5):471 − 486. DOI: 10.1016/j.geotexmem.2017.07.003
[144] QIN Changbing,CHIAN S C. Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method[J]. International Journal of Geomechanics,2019,19(9):04019106. DOI: 10.1061/(ASCE)GM.1943-5622.0001489
[145] 李雨浓,赵巍,刘畅,等. 基于修正拟动力法的抗滑桩加固边坡三维地震稳定性分析[J]. 中国公路学报,2024,37(1):44 − 54. [LI Yunnong,ZHAO Wei,LIU Chang,et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp,2024,37(1):44 − 54. (in Chinese with English abstract)] LI Yunnong, ZHAO Wei, LIU Chang, et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp, 2024, 37(1): 44 − 54. (in Chinese with English abstract)
[146] CHEN Guanghui,ZOU Jinfeng,SHENG Yuming,et al. Three-dimensional seismic bearing capacity assessment of heterogeneous and anisotropic slopes[J]. International Journal of Geomechanics,2022,22(9):04022148. DOI: 10.1061/(ASCE)GM.1943-5622.0002493
[147] 张磊,孙树林,储浩,等. 基于改进拟动力法的主动土压力分析研究[J]. 河北工程大学学报(自然科学版),2017,34(3):32 − 37. [ZHANG Lei,SUN Shulin,CHU Hao,et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition),2017,34(3):32 − 37. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-9469.2017.03.007 ZHANG Lei, SUN Shulin, CHU Hao, et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2017, 34(3): 32 − 37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2017.03.007
[148] 陈立伟,安彦勇,赵靓,等. 基于改进拟动力法的沿河岩石边坡地震抗倾覆稳定性分析[J]. 水道港口,2023,44(5):819 − 827. [CHEN Liwei,AN Yanyong,ZHAO Jing,et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor,2023,44(5):819 − 827. (in Chinese with English abstract)] CHEN Liwei, AN Yanyong, ZHAO Jing, et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor, 2023, 44(5): 819 − 827. (in Chinese with English abstract)