Study of factors influencing soil water repellency under simulated forest fire
-
摘要:
云南松作为西南山区主要树种,富含树脂易引发森林火灾,林火后火烧迹地土壤通常会产生斥水性,导致火烧区地表径流和侵蚀加剧,最终诱发火后泥石流。为探究土壤斥水性影响因素及形成机制,以四川省冕宁县腊窝乡松林区未火烧土壤为研究对象,采用室内模拟火烧试验,考虑松脂含量、土壤角砾含量、初始有机质含量、加热温度和加热时间等因素设计正交试验,利用X射线衍射和扫描电镜分析土壤化学元素和微观结构变化,研究林火对土壤斥水性的影响。结果表明:林火后各因素对土壤斥水性影响程度排序为初始有机质含量>加热温度>加热时间>松脂含量>角砾含量;初始有机质含量、加热温度对土壤斥水性的影响极显著;加热时间、松脂含量影响显著;角砾含量影响不显著。各因素均能引起土壤中有机化合物变化,进而影响土壤斥水性。具体表现:适度火烧后(温度≤400 °C)土壤中有机质化合物发生化学变化,形成致密的疏水有机质薄膜,覆盖于矿物颗粒表面并充填于颗粒间隙,导致土壤斥水性增强;过度火烧(温度> 400 °C)导致有机质被消耗,土壤微团聚体结构被破坏,矿物颗粒呈松散堆叠状态,土壤斥水性减小。研究结果可为松林区火烧迹地土壤侵蚀模式和火后泥石流形成机制提供依据。
Abstract:Yunnan pine, as the prominent arboreal species in the southwestern mountains, exhibits abundant resin content and displays susceptibility to forest fires. Soil in fire-affected areas typically exhibits water repellency after a forest fire, leading to increased surface runoff and erosion within the affected area, ultimately triggering post-fire debris flows. In order to investigate the influencing factors and formation mechanism of soil water repellency, unburned soils in the pine forest vegetation area of Lawo Township, Mianning County, Sichuan Province was selected as the research project. Indoor simulated fire experiment were conducted, and orthogonal experiments were designed considering factors such as turpentine content, soil debris content, initial organic content, heating temperature, and heating period. X-ray diffraction and scanning electron microscopy were used to analyze changes in chemical elements and microstructure, studying the impact of forest fires on soil water repellency. The results showed that the degree of influence of various factors on soil water repellency was ranked as follows: initial organic matter content, heating temperature, heating period, pine resin content, and debris content. The initial organic matter content and heating temperature on soil water repellency was highly significant, while heating time and pine resin content was significant, and debris content had no significant impact. All factors could cause changes in organic compounds in the soil, thereby affecting soil water repellency. Specifically, after moderate burning (temperature ≤ 400 °C), organic compounds in the soil underwent chemical changes, forming dense hydrophobic organic matter films covering the surface of mineral particles and filling the interstitial space of the particles, resulting in enhanced soil water repellency. Excessive burning (temperature > 400 °C) resulted in the consumption of organic matter, the destruction of soil microaggregate structure, loose stacking of mineral particles, and a decrease in soil water repellency. The research results can provide a basis for the soil erosion pattern of soil in pine forest fire-affected areas and the formation mechanism of post-fire debris flows.
-
Keywords:
- soil water repellency /
- burned area /
- pine forest /
- chemical properties /
- microstructure
-
•特别致谢•
2020年,54位审稿专家付出很多时间和精力为本刊审读稿件,为提高期刊学术质量做出了重要贡献。编辑部全体成员对所有参与审稿的专家表示最衷心的感谢!
表 1 2020年度《中国地质灾害与防治学报》审稿专家(按姓氏笔画为序) 姓名 单位 姓名 单位 马凤山 中国科学院地质与地球物理研究所 张永双 中国地质科学院水文地质环境地质研究所 王 清 吉林大学 张永波 太原理工大学 王文沛 中国地质环境监测院 张志龙 中国矿业大学(北京) 王贤能 深圳市工勘岩土集团有限公司 张鸣之 中国地质环境监测院 王树仁 河南理工大学 陈红旗 中国地质环境监测院 王桂杰 中国地质环境监测院 陈昌彦 北京市勘察设计研究院有限公司 王雁林 陕西省国土资源厅地质环境处 陈洪凯 枣庄学院 牛瑞卿 中国地质大学(武汉) 佴 磊 吉林大学 齐 干 中国地质环境监测院 赵文祎 中国地质环境监测院 邢爱国 上海交通大学 赵鲁强 中国气象局公共气象服务中心 朱赛楠 中国地质环境监测院 胡凯衡 中国科学院水利部成都山地灾害与环境研究所 乔建平 中国科学院水利部成都山地灾害与环境研究所 胡卸文 西南交通大学 向喜琼 贵州大学 胡新丽 中国地质大学(武汉) 刘东升 重庆市地质矿产勘查开发局 姜月华 中国地质调查局南京地质调查中心 刘希林 中山大学 夏元友 武汉理工大学 闫金凯 中国地质科学院 钱江澎 四川省地质工程勘察院 江 耀 中国科学院水利部成都山地灾害与环境研究所 徐则民 昆明理工大学 许国辉 中国海洋大学 唐辉明 中国地质大学(武汉) 孙文洁 中国矿业大学(北京) 黄波林 三峡大学 孙亚军 中国矿业大学 曹修定 中国地质调查局水文地质环境地质调查中心 孙红福 中国矿业大学(北京) 龚士良 中国地质调查局地面沉降研究中心 李 忠 防灾科技学院 韩 冰 中国地质环境监测院 李树志 中煤科工集团唐山研究院有限公司 喻孟良 中国地质环境监测院 肖锐华 中国地质环境监测院 程国明 中国地质环境监测院 何发亮 中铁西南科学研究院有限公司 温铭生 中华人民共和国应急管理部 余志山 甘肃省地质环境监测院 谭维贤 内蒙古工业大学 邹正盛 河南理工大学 魏云杰 中国地质环境监测院 第八届《中国地质灾害与防治学报》优秀论文评选结果
为了鼓励广大作者撰写高质量的科技论文, 推动我国地质灾害防治工程行业的学术交流, 提升和扩大《中国地质灾害与防治学报》的办刊质量与影响力, 《中国地质灾害与防治学报》编辑部从2013年起开展优秀论文评选活动。
评选活动遵守客观公正, 严格筛选, 优中选优的原则。 由责任编辑提出推荐名单, 并参考一年中论文的被引频次、下载次数和影响程度, 经编辑部认真初评和复评, 按得票高低评选出优秀论文。
2019年《中国地质灾害与防治学报》发表论文112篇, 从中评选出第八届《中国地质灾害与防治学报》优秀论文20篇。希望获奖作者再接再厉, 开拓创新, 为推动我国地质灾害防治工程学科的发展继续努力!
表 2 第八届《中国地质灾害与防治学报》优秀论文名单(2019年发表)题目 作者 期刊 中国西藏金沙江白格滑坡灾害研究 王立朝,温铭生,冯振,孙炜锋,魏云杰,
李俊峰,王文沛第一期 库水位波动及降雨作用下巫峡干井子滑坡流-固耦合特征及稳定性分析 梁鑫,殷坤龙,陈丽霞,康璇,杨永刚,张亮 第一期 汉江孤山航电枢纽工程区近坝滑坡稳定性分析及防治工程建议 王启国 第一期 基于不同因子分级法的滑坡易发性评价——以湖北远安县为例 闫举生,谭建民 第一期 基于函数赋值模型与模糊综合评判法的单沟泥石流危险性评价 尚慧,王明轩,罗东海,冯皎,王爱军,薛跃明 第一期 地质灾害无人机调查数据管理云平台建设 马娟,张鸣之,韩冰,黄喆,石爱军 第一期 高分二号卫星数据在地质灾害调查中的应用——以重庆万州区为例 董文,潘建平,阳振宇,夏鑫,张定凯,
向淇文,曹建虎,廖振环第一期 邻近输电塔路堑边坡失稳风险定量评估及加固工程设计优化 林阿娜,王浩,颜斌,戴旭明,胡燮,赵小盘,王晨 第二期 单体危岩崩塌灾害危险性评价——以贵州威宁县新发乡樊家岩为例 武中鹏,刘宏,董秀群,邓凯伦 第二期 降雨和库水联合作用下边坡稳定性变化规律 徐翔,王义兴,方正 第二期 秦望山隧道南口高陡岩质边坡稳定性分析及治理效果评价 郝社锋,蒋波,喻永祥,宋京雷,徐昊,孙少锐 第二期 黄土湿陷系数影响因素的相关性分析 朱凤基,南静静,魏颖琪,白兰 第二期 地质灾害防治标准化建设的思考 刘传正 第三期 重庆甑子岩崩塌落石动力学特征及危险性分区 孙敬辉,石豫川 第三期 基于离散元的含软弱夹层岩质边坡滑移机理分析 范昊天,孙少锐,王亚山,张纪星,刘宝生 第三期 广西桂林市规划中心城区岩溶发育特征及分布规律 江思义,吴福,刘庆超,李海良,吴莹莹 第三期 降雨引发的兰州黄土滑坡时空规律分析和临界降雨量预测 朱晓霞,张力,杨树文 第四期 湖北武汉典型地区岩溶发育特征分析 李慧娟,金小刚,涂婧,魏瑞均,李海涛,杨涛 第四期 广西桂林市规划中心城区岩溶塌陷易发性评价 吴福,江思义,刘庆超,何源,李海良 第五期 湖北武汉岩溶塌陷时空分布规律及其影响因素分析 涂婧,魏瑞均,杨戈欣,刘长宪,金小刚,李海涛 第六期 -
表 1 正交实验结果
Table 1 Orthogonal experimental results
编号 加热温度/°C 加热时间/min 初始有机质含量/% 松脂含量/g 角砾含量/% WDPT/s 有机质含量/% 土壤斥水性变化
对照组→试验组1 100 5 <5 0 0 35 7.61 亲水→轻度 2 100 15 5~10 0.2 20 3956 11.90 轻度→极端 3 100 30 10~15 0.5 5 5257 21.94 强烈→极端 4 100 60 >15 1 40 4122 18.37 强烈→极端 5 100 120 <5 2 10 3204 15.00 亲水→严重 6 200 5 >15 5 20 8038 25.32 强烈→极端 7 200 15 <5 0 5 3584 7.66 亲水→严重 8 200 30 <5 0.2 40 1270 6.95 亲水→严重 9 200 60 5~10 0.5 10 4020 17.94 轻度→极端 10 200 120 10~15 1 0 5538 22.84 强烈→极端 11 400 5 5~10 1 5 6119 10.33 轻度→极端 12 400 15 10~15 2 40 9530 29.07 强烈→极端 13 400 30 >15 0 10 3397 9.06 强烈→严重 14 400 60 <5 0.2 0 11 1.70 亲水→轻度 15 400 120 <5 0.5 20 2300 5.84 亲水→严重 16 600 5 <5 0.5 40 3258 8.16 亲水→严重 17 600 15 <5 1 10 2569 6.06 亲水→严重 18 600 30 5~10 2 0 123 0.45 轻度→强烈 19 600 60 10~15 0 20 1 0.28 强烈→亲水 20 600 120 >15 0.2 5 1 0.16 强烈→亲水 21 800 5 10~15 0.2 10 5225 23.10 强烈→极端 22 800 15 >15 0.5 0 132 1.34 强烈→强烈 23 800 30 <5 1 20 1 0.62 亲水→亲水 24 800 60 <5 2 5 1 0.15 亲水→亲水 25 800 120 5~10 0 40 1 0.46 轻度→亲水 表 2 极差分析结果
Table 2 Extreme variance analysis results
水平 A B C D E 1 3315 4535 1523 1404 1168 2 4490 3954 2844 2093 2992 3 4071 2009 5110 2793 3683 4 1191 1631 3138 3670 2659 5 1072 2009 / 4179 3636 R 3418 2904 3587 2776 2515 排序 2 3 1 4 5 表 3 方差分析结果
Table 3 Analysis of variance (ANOVA) results
来源 F p 加热温度(A) 12.167 0.010 加热时间(B) 7.478 0.024 松脂含量(C) 5.751 0.041 角砾含量(D) 4.670 0.061 初始有机质含量(E) 12.271 0.009 表 4 样品处理前后的有机质含量及WDPT
Table 4 Organic matter content and WDPT before and after sample treatment
土壤样品 平均WDPT/s 有机质含量/% 未处理 3319 12.5 200°C 6065 10.6 400°C 8702 9.3 600°C 1652 5.8 表 5 土壤样品微团聚体颗粒分析结果
Table 5 Analysis results of soil samples microaggregates particles
火烧程度 平面粒径/μm 平均面积/μm2 平均周长/μm 平均形状系数 未火烧 2.52 2.54 6.12 0.85 200 °C 3.18 2.87 6.96 0.74 400 °C 3.59 3.48 8.48 0.61 600 °C 1.58 1.76 4.89 0.92 表 6 土壤样品孔隙分析结果
Table 6 Results of pore analysis of soil samples
火烧程度 平面孔隙率/% 平均面积/μm2 平均周长/μm 平均形状系数 未火烧 44.93 3.89 7.76 0.81 200°C 38.18 3.15 7.23 0.76 400°C 30.19 2.58 7.05 0.65 600°C 45.56 1.95 5.54 0.83 -
[1] 王严,胡卸文,杨瀛,等. 火烧迹地土壤斥水性和渗透性变化特性[J]. 水文地质工程地质,2019,46(6):40 − 45. [WANG Yan,HU Xiewen,YANG Ying,et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(6):40 − 45. (in Chinese with English abstract)] WANG Yan, HU Xiewen, YANG Ying, et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 40 − 45. (in Chinese with English abstract)
[2] 胡卸文,金涛,殷万清,等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(4):762 − 771. [HU Xiewen,JIN Tao,YIN Wanqing,et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township,Xichang City[J]. Journal of Engineering Geology,2020,28(4):762 − 771. (in Chinese with English abstract)] HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township, Xichang City[J]. Journal of Engineering Geology, 2020, 28(4): 762 − 771. (in Chinese with English abstract)
[3] WU Yichen,ZHANG Nan,SLATER G,et al. Hydrophobicity of peat soils:Characterization of organic compound changes associated with heat-induced water repellency[J]. The Science of the Total Environment,2020,714:136444. DOI: 10.1016/j.scitotenv.2019.136444
[4] MAO Jiefei,ZHANG Kun,CHEN Baoliang. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil[J]. Environmental Pollution,2019,253:779 − 789. DOI: 10.1016/j.envpol.2019.07.051
[5] THOMAZ E L,FACHIN P A. Effects of heating on soil physical properties by using realistic peak temperature gradients[J]. Geoderma,2014,230/231:243 − 249. DOI: 10.1016/j.geoderma.2014.04.025
[6] POESEN J,LAVEE H. Rock fragments in top soils:Significance and processes[J]. CATENA,1994,23(1/2):0341816294900507.
[7] DOERR S H,THOMAS A D. The role of soil moisture in controlling water repellency:New evidence from forest soils in Portugal[J]. Journal of Hydrology,2000,231/232:134 − 147. DOI: 10.1016/S0022-1694(00)00190-6
[8] 张绍科,胡卸文,王严,等. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2021,32(5):79 − 85. [ZHANG Shaoke,HU Xiewen,WANG Yan,et al. Disaster mechanism of post-fire debris flow in Huayanzi gully,Mianning County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):79 − 85. (in Chinese with English abstract)] ZHANG Shaoke, HU Xiewen, WANG Yan, et al. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79 − 85. (in Chinese with English abstract)
[9] 杨瀛,胡卸文,王严,等. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报,2021,56(4):818 − 827. [YANG Ying,HU Xiewen,WANG Yan,et al. Spatial development characteristics of post-fire debris flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University,2021,56(4):818 − 827. (in Chinese with English abstract)] YANG Ying, HU Xiewen, WANG Yan, et al. Spatial development characteristics of post-fire debris flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818 − 827. (in Chinese with English abstract)
[10] GORDILLO-RIVERO Á J,GARCÍA-MORENO J,JORDÁN A,et al. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning[J]. Hydrological Processes,2014,28(24):5832 − 5843. DOI: 10.1002/hyp.10072
[11] DEBANO L,RICE R M,CONRAD C E. Soil heating in chaparral fires:Effects on soil properties,plant nutrients,erosion,and runoff[J]. USDA Forest Service Research Paper PSW (USA). no. 145. 1979.
[12] GIMENO-GARC\'\IA E,ANDREU V,RUBIO J L. Spatial patterns of soil temperatures during experimental fires[J]. Geoderma,2004,118(1/2):17 − 38.
[13] 何诚,舒立福,刘超,等. 南方人工林地阴燃火温度变化特征研究[J]. 林业工程学报,2020,5(2):151 − 157. [HE Cheng,SHU Lifu,LIU Chao,et al. Research on variation of temperature of underground fire in south China plantation[J]. Journal of Forestry Engineering,2020,5(2):151 − 157. (in Chinese with English abstract)] HE Cheng, SHU Lifu, LIU Chao, et al. Research on variation of temperature of underground fire in south China plantation[J]. Journal of Forestry Engineering, 2020, 5(2): 151 − 157. (in Chinese with English abstract)
[14] ZAVALA L M,GRANGED A J P,JORDÁN A,et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma,2010,158(3/4):366 − 374.
[15] CERTINI G,NOCENTINI C,KNICKER H,et al. Wildfire effects on soil organic matter quantity and quality in two fire-prone mediterranean pine forests[J]. Geoderma,2011,167/168:148 − 155. DOI: 10.1016/j.geoderma.2011.09.005
[16] JORDÁN A,ZAVALA L M,MATAIX-SOLERA J,et al. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils[J]. CATENA,2011,84(3):136 − 147. DOI: 10.1016/j.catena.2010.10.007
[17] BODÍ M B,MARTIN D A,BALFOUR V N,et al. Wildland fire ash:Production,composition and eco-hydro-geomorphic effects[J]. Earth-Science Reviews,2014,130:103 − 127. DOI: 10.1016/j.earscirev.2013.12.007
[18] MASTROLONARDO G,CERTINI G,KREBS R,et al. Effects of fire on soil organic matter quality along an altitudinal sequence on Mt. Etna,Sicily[J]. CATENA,2013,110:133 − 145. DOI: 10.1016/j.catena.2013.05.017
[19] 胡彩莉,马玉贞,郭超,等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境,2016,44(1):110 − 118. [HU Caili,MA Yuzhen,GUO Chao,et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment,2016,44(1):110 − 118. (in Chinese with English abstract)] HU Caili, MA Yuzhen, GUO Chao, et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 2016, 44(1): 110 − 118. (in Chinese with English abstract)
[20] 杜娟. 海南有机质浸染砂水泥土力学特性及微观机理研究[D]. 天津:天津大学,2021. [DU Juan. Mechanical properties and micro-mechanism of cement-stabilized organic-matter-disseminated sand in Hainan[D]. Tianjin:Tianjin University,2021. (in Chinese with English abstract)] DU Juan. Mechanical properties and micro-mechanism of cement-stabilized organic-matter-disseminated sand in Hainan[D]. Tianjin: Tianjin University, 2021. (in Chinese with English abstract)
[21] JORDÁN A,GONZÁLEZ F A,ZAVALA L M. Re-establishment of soil water repellency after destruction by intense burning in a Mediterranean heathland (SW Spain)[J]. Hydrological Processes,2010,24(6):736 − 748. DOI: 10.1002/hyp.7519
[22] DE BLAS E,ALMENDROS G,SANZ J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils[J]. Geoderma,2013,206:75 − 84. DOI: 10.1016/j.geoderma.2013.04.027
[23] 吴小雨,涂安国,李国辉,等. 土壤斥水性影响因素及管理措施研究综述[J]. 中国水土保持,2023(1):27 − 30. [WU Xiaoyu,TU Anguo,LI Guohui,et al. Review on the influencing factors and management measures of soil water repellency[J]. Soil and Water Conservation in China,2023(1):27 − 30. (in Chinese with English abstract)] WU Xiaoyu, TU Anguo, LI Guohui, et al. Review on the influencing factors and management measures of soil water repellency[J]. Soil and Water Conservation in China, 2023(1): 27 − 30. (in Chinese with English abstract)
[24] MATAIX-SOLERA J,CERD\`A A,ARCENEGUI V,et al. Fire effects on soil aggregation:A review[J]. Earth Science Reviews,2011,109(1):44 − 60.
[25] ALCAÑIZ M,OUTEIRO L,FRANCOS M,et al. Effects of prescribed fires on soil properties:A review[J]. The Science of the Total Environment,2018,613/614:944 − 957. DOI: 10.1016/j.scitotenv.2017.09.144
[26] THOMAZ E L. Effects of fire on the aggregate stability of clayey soils:A meta-analysis[J]. Earth-Science Reviews,2021,221:103802. DOI: 10.1016/j.earscirev.2021.103802
[27] FRANCO C M M,CLARKE P J,TATE M E,et al. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands[J]. Journal of Hydrology,2000,231/232:47 − 58. DOI: 10.1016/S0022-1694(00)00182-7
[28] GARCÍA MORENO J,GORDILLO R Á J,GIL T J,et al. Do stones modify the spatial distribution of fire induced soil water repellency? Preliminary data[J]. Flamma,2013,4(2):76.