ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于倾斜摄影的高位危岩特征获取和稳定性评价以重庆万州观音山危岩带为例

康尘云

康尘云. 基于倾斜摄影的高位危岩特征获取和稳定性评价−以重庆万州观音山危岩带为例[J]. 中国地质灾害与防治学报,2022,33(5): 66-75. DOI: 10.16031/j.cnki.issn.1003-8035.202203035
引用本文: 康尘云. 基于倾斜摄影的高位危岩特征获取和稳定性评价−以重庆万州观音山危岩带为例[J]. 中国地质灾害与防治学报,2022,33(5): 66-75. DOI: 10.16031/j.cnki.issn.1003-8035.202203035
KANG Chenyun. Feature acquisition and stability evaluation of high dangerous rock mass based on oblique photography: A case study at Guanyinshan in Wanzhou , Chongqing Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 66-75. DOI: 10.16031/j.cnki.issn.1003-8035.202203035
Citation: KANG Chenyun. Feature acquisition and stability evaluation of high dangerous rock mass based on oblique photography: A case study at Guanyinshan in Wanzhou , Chongqing Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 66-75. DOI: 10.16031/j.cnki.issn.1003-8035.202203035

基于倾斜摄影的高位危岩特征获取和稳定性评价——以重庆万州观音山危岩带为例

详细信息
    作者简介:

    康尘云(1995-),男,陕西乾县人,地质工程专业,硕士,工程师,主要从事铁路、公路线路的勘察工作。E-mail:kangchenyun@outlook.com

  • 中图分类号: P642

Feature acquisition and stability evaluation of high dangerous rock mass based on oblique photography: A case study at Guanyinshan in Wanzhou , Chongqing Province

  • 摘要: 观音山危岩带对拟建恩广高速万开段庙垭隧道、苎溪河特大桥和临近居民构成安全威胁,急需调查治理,但因危岩地处高位,传统调查、评价手段难以实施。通过地质调查、钻孔取样和室内试验获取基础地质信息;利用倾斜摄影对危岩进行识别、几何特征获取和边界条件分析;以赤平投影法和刚体极限平衡法分别进行危岩带、危岩体的稳定性分析;对不稳定危岩单体利用Rocfall软件进行运动学模拟。结果表明:陡崖发育6处主要危岩单体,体积400~5000 m3不等;岩体受2组节理面切割和结构面组合控制,整体稳定性较差,易发生坠落式和倾倒式破坏;其中W3、W6危岩体在暴雨工况下处于不稳定状态,对拟建工程形成滚动冲击,动能为5~12 kJ不等。研究结果可以为观音山危岩治理措施的选型、规模提供设计参数,为高位危岩的调查防治提供参考,对利用航测手段提高传统地质调查效率和精度做出了新思考。
    Abstract: The Guanyin mountain dangerous rock belt poses a security threat to the Miaoya tunnel of the proposed Wankai section of the Enguang Expressway, as well as Zhuxihe Bridge and the neighboring residents. It is urgent to be investigated and controled. Traditional investigation and evaluation methods are difficult to implement on the high dabgerous rock mass. Basic geological information is obtained through geological survey, drilling sampling and experiments, identification, geometric feature acquisition and boundary condition analysis of the dangerous rock mass are carried out by oblique photography, stability analysis of the dangerous rock belts and the dangerous rock masses are carried out by stereographic projection method and rigid body limit balance method, respectively. Simulation is carried out by Rocfall software for unstable dangerous rock. The results show that the cliffs develop six main dangerous rock zones with a volume of 400−5000 m3, and the rock mass is controlled by two groups of joint surfaces and structural surfaces combination, the overall stability is poor, prone to fall and tipping; among them, the W3 and W6 dangerous rock masses are in an unstable state under heavy rain conditions, forming a rolling impact on the proposed project, and the kinetic energy is 5−12 kJ. The research results can provide design parameters for the selection of the control measures of the dangerous rocks in Guanyin Mountain, and provide reference for the investigation and prevention of high dangerous rock mass, it puts forward new idea on the use of aerial survey methods to improve the efficiency and accuracy of traditional geological surveys.
  • 图  1   万州地区构造纲要图[8]

    Figure  1.   Geotectonic map of Wanzhou District

    图  2   观音山危岩带工程地质平面图

    Figure  2.   Engineering geological map of Guanyin Mountain dangerous rock belt

    图  3   危岩演化过程示意图

    Figure  3.   Evolution process of dangerous rock

    图  4   泥岩软弱基座和节理切割

    Figure  4.   Mudstone weak base and joints cutting

    图  5   三维模型建立

    Figure  5.   3D model establishment

    图  6   三维模型分析

    Figure  6.   3D model analysis

    图  7   危岩W1、W2、W3宏观稳定性分析

    Figure  7.   Macroscopic stability analysis of the W1, W2 and W3 dangerous rocks

    图  8   危岩W4、W5、W6宏观稳定性分析

    Figure  8.   Macroscopic stability analysis of the W4, W5 and W6 dangerous rocks

    图  9   危岩稳定性计算示例

    Figure  9.   Stability calculation example of dangerous rocks

    图  10   危岩W3运动学分析

    Figure  10.   Kinematics analysis of the W3 dangerous rock

    图  11   危岩W6运动学分析

    Figure  11.   Kinematics analysis of the W6 dangerous rock

    表  1   危岩体发育特征

    Table  1   Development characteristics of dangerous rocks

    编号分布高程/m形态危岩体尺寸(长×厚×高)/m体积/m3凹腔尺寸(高×深)/m失稳
    模式
    类别
    W1340~386不规则46.0×9.7×12.45532.8814.0×4.7坠落式高位/特大型
    W2345~381长方形24.3×6.2×7.01054.628.5×3.8坠落式高位/特大型
    W3350~380长方形19.4×8.5×9.81616.0211.0×4.0坠落式高位/特大型
    W4280~300不规则13.4×7.2×5.0482.402.0×1.5倾倒式低位/特大型
    W5270~280长方形25.0×6.8×4.5765.001.5×1.2倾倒式低位/大型
    W6280~285长方形22.0×7.0×3.7569.801.0×0.8倾倒式低位/大型
      注:类别划分依据《重庆地质灾害防治工程勘查规范》(DB 50/ T 143—2018)。
    下载: 导出CSV

    表  2   岩体物理力学参数

    Table  2   Physical and mechanical parameters of rock mass

    岩性工况γ
    /(kN·m−3
    c/kPaφ/(°)flk/kPa
    J2s
    砂岩
    天然24.6~25.2737~103432.9~35.1280~580
    暴雨24.9~25.8643~97631.6~34.8220~495
    下载: 导出CSV

    表  3   岩体稳定性计算结果

    Table  3   Rock mass stability calculation results

    编号工况断面面积/m2危岩高度/mFs评价
    W1天然120.312.401.385基本稳定
    暴雨1.162欠稳定
    W2天然43.407.001.741稳定
    暴雨1.368基本稳定
    W3天然83.309.801.169欠稳定
    暴雨0.895不稳定
    W4天然36.005.001.389基本稳定
    暴雨1.102欠稳定
    W5天然30.604.501.483稳定
    暴雨1.169欠稳定
    W6天然25.903.701.083欠稳定
    暴雨0.925不稳定
    下载: 导出CSV

    表  4   恢复系数

    Table  4   Coefficient of restitution

    碰撞系数地面岩性
    坚硬岩、较硬岩较软岩、软岩、极软岩硬土普通土松土
    法向回弹系数Rn0.40.350.30.260.22
    切向回弹系数Rt0.860.840.80.750.65
    下载: 导出CSV

    表  5   滚动摩擦系数

    Table  5   Coefficient of rolling friction

    坡面特征滚动摩擦系数摩擦角/(°)
    光滑岩面、混凝土表面0.30~0.6021.8~31.0
    块石堆积坡面0.55~0.7028.8~35.0
    密实碎石堆积坡面、硬土坡面、
    植被(灌木丛为主)发育
    0.55~0.8528.8~40.4
    软土坡面、植被不发育或少量杂草0.50~0.8526.6~40.4
    下载: 导出CSV

    表  6   模拟参数选取

    Table  6   Selection of simulation parameters

    边坡部位Rn/StRt/Stφ/St粗糙度
    上部基岩裸露区0.4/0.030.86/0.0425.1/0.032.42
    下部堆积区0.3/0.030.84/0.0231/0.023.00
    下载: 导出CSV
  • [1] 冉涛, 宋志, 蒋正, 等. 三峡库区万州区四层岩危岩带发育特征、稳定性评价及防治对策[J/OL]. 沉积与特提斯地质: 1 − 13 [2022-03-03]

    RAN Tao, SONG Zhi, JIANG Zheng, et al. Development characteristics, stability evaluation and control measures of the four-layer rock-hazardous rock belt in Wanzhou District of the Three Gorges Reservoir area[J/OL]. Sedimentation and Tethys Geology: 1 − 13 [2022-03-03]. (in Chinese with English abstract)

    [2] 叶四桥,唐红梅,祝辉. 万州地区危岩发育的典型成因[J]. 水力发电,2007,33(2):31 − 33. [YE Siqiao,TANG Hongmei,ZHU Hui. Typical formation causes of dangerous rock development in Wanzhou area[J]. Water Power,2007,33(2):31 − 33. (in Chinese with English abstract)
    [3] 陈洪凯,鲜学福,唐红梅,等. 三峡库区危岩群发性机理与防治—以万州太白岩为例[J]. 重庆大学学报(自然科学版),2008,31(10):1178 − 1184. [CHEN Hongkai,XIAN Xuefu,TANG Hongmei,et al. A massive development mechanism and countermeasures for perilous rocks in the Three Gorges Reservoir area of P. R. China:The example of the Taibaiyan cliff at Wanzhou[J]. Journal of Chongqing University (Natural Science Edition),2008,31(10):1178 − 1184. (in Chinese with English abstract)
    [4] 刘广宁, 陈州丰, 黄波林. 三峡库区万州段沿江危岩失稳模式及影响因素分析[J]. 西部探矿工程, 2012, 24(12): 14 − 17

    LIU Guangning, CHEN Zhoufeng, HUANG Bolin. Analysis of the instability pattern and influencing factors of dangerous rocks along the Wanzhou section of the Three Gorges Reservoir area[J]. Western Prospecting Engineering, 2012, 24(12): 14 − 17. (in Chinese)

    [5] 邵其东. 三峡库区万州区天生城危岩滑坡治理技术[J]. 西部探矿工程, 2011, 23(2): 51 − 53

    SHAO Qidong. Control technology for landslide of Tianshengcheng perilous rock in Wanzhou District of Three Gorges Reservoir area[J]. West-China Exploration Engineering, 2011, 23(2): 51 − 53. (in Chinese)

    [6] 刘长春, 殷坤龙. 重庆市万州区戴家岩危岩灾害风险分析[J]. 水文地质工程地质, 2014, 41(6): 128 − 133

    LIU Changchun, YIN Kunlong. Risk analysis for the Daijiayan perilous rock in Wanzhou District of Chongqing[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 128 − 133. (in Chinese with English abstract))

    [7] 孙敬辉,石豫川. 重庆甑子岩崩塌落石动力学特征及危险性分区[J]. 中国地质灾害与防治学报,2019,30(3):6 − 11. [SUN Jinghui,SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zhengziyan, Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):6 − 11. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.03.02
    [8] 林松, 王薇, 邓小虎, 等. 三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例[J]. 地球科学,2019,44(9):3135 − 3146. [LIN Song, WANG Wei, DENG Xiaohu, et al. Geophysical observation of typical landslides in Three Gorges Reservoir area and its significance:A case study of Sifangbei landslide in Wanzhou District[J]. Earth Science,2019,44(9):3135 − 3146. (in Chinese with English abstract)
    [9] 陈洪凯, 唐红梅, 王林峰, 等. 危岩崩塌演化理论及应用[M]. 北京: 科学出版社, 2009.

    CHEN Hongkai, TANG Hongmei, WANG Linfeng, et al. Evolution theory and application ofperilous rock collapse[M]. Beijing: Science Press, 2009. (in Chinese)

    [10] 张治平, 夏志雄, 金昶睿, 等. 基于摄影测量的落石路径获取及被动防护网服役性能评估[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3274 − 3283

    ZHANG Zhiping, XIA Zhixiong, JIN Changrui, et al. Acquisition of rockfall path and service performance analysis of passive protective net based on photogrammetry[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3274 − 3283. (in Chinese with English abstract)

    [11] 重庆市质量技术监督局.地质灾害防治工程勘查规范: DB 50/T 143—2018 [S]. 2018.

    Chongqing Municipal Bureau of Quality and Technical Supervision. Code for investigation of geological hazard control engineering: DB 50/T 143—2018[S]. 2018. (in Chinese)

    [12] 王 翔,牌立芳,吴红刚. 拉林铁路变坡面倾角崩塌落石对桥梁结构破坏作用的模拟分析与试验研究[J]. 岩石力学与工程学报,2020,39(8):1622 − 1633. [WANG Xiang,PAI Lifang,WU Honggang. Simulation analysis and experimental study on the damage of bridge structure caused by tilt collapse and rockfall on the slope of Lalin railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1622 − 1633. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2020.0097
  • 期刊类型引用(7)

    1. 刘梦蝶,邓青春,刘辉,张斌. 四川省面积-高程积分空间格局分析. 西华师范大学学报(自然科学版). 2025(01): 49-57 . 百度学术
    2. 李圣,徐雨帆,卿元华,高骏. 滇西澜沧江流域面积-高程积分及其地貌意义. 四川地震. 2025(01): 36-41 . 百度学术
    3. 孙聿卿,葛永刚,陈兴长,曾璐,梁馨月,冯鑫. 金沙江流域泥石流危险性评价. 地质通报. 2025(Z1): 377-391 . 百度学术
    4. 赵宇鹏,杨太强,王昆,程伟,罗军尧. 强震区沟谷宽缓组合对泥石流动力学特征影响研究. 人民长江. 2024(06): 167-175 . 百度学术
    5. 褚永彬,王传启,杨泓,宋扬,仇开莉. 四川省高速公路沿线地质灾害与小流域发育阶段的关系. 公路. 2023(06): 161-165 . 百度学术
    6. 文强,胡卸文,刘波,席传杰,何坤. 四川丹巴梅龙沟“6·17”泥石流成灾机理分析. 中国地质灾害与防治学报. 2022(03): 23-30 . 本站查看
    7. 张友谊,王云骏,袁亚东. 基于分形理论和模型试验的沟道物源动储量评价模型. 中国地质灾害与防治学报. 2022(05): 40-49 . 本站查看

    其他类型引用(3)

图(11)  /  表(6)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  143
  • PDF下载量:  254
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-07-04
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回