ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响

张志兼, 黄勋, 蔡雨微, 傅镜羽, 朱悦, 杨锐, 韩超群

张志兼,黄勋,蔡雨微,等. 三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响[J]. 中国地质灾害与防治学报,2022,33(3): 39-50. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-05
引用本文: 张志兼,黄勋,蔡雨微,等. 三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响[J]. 中国地质灾害与防治学报,2022,33(3): 39-50. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-05
ZHANG Zhijian, HUANG Xun, CAI Yuwei, et al. The evolution pattern and influence of human activities of landslide driving factors in Wulong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 39-50. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-05
Citation: ZHANG Zhijian, HUANG Xun, CAI Yuwei, et al. The evolution pattern and influence of human activities of landslide driving factors in Wulong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 39-50. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-05

三峡库区武隆段滑坡灾害驱动因子演变格局与人类活动的影响

基金项目: 国家自然科学基金项目(41907396);重庆市教委科学技术研究项目(KJQN201900535);重庆师范大学基金项目(21XWB007);重庆师范大学大学生创新创业训练计划项目(X20191063707032);重庆师范大学校级研究生科研创新项目(YKC21047)
详细信息
    作者简介:

    张志兼(1998-),男,江西宜春人,硕士研究生,主要从事自然灾害风险评价方面的研究。E-mail:zhangzhijian21@163.com

    通讯作者:

    黄 勋(1986-),男,四川广元人,博士,高级工程师,主要从事泥石流灾害风险评价与管理方面的研究。E-mail:huangxun@cqnu.edu.cn

  • 中图分类号: P642.22

The evolution pattern and influence of human activities of landslide driving factors in Wulong section of the Three Gorges Reservoir area

  • 摘要: 在快速城镇化背景下,人类活动已成为影响滑坡分布的重要因素。文章以重庆武隆区为例,基于1991—2015年330处历史滑坡数据,运用重力模型和标准差椭圆模型,揭示了武隆区滑坡灾害的时空演变格局;利用地理探测器分析了2001—2005、2006—2010和2011—2015三个时段滑坡分布的驱动因子,解释了滑坡驱动因子演变的机制。结果表明:(1)在时间分布上,武隆滑坡累计曲线呈现出“缓-陡-缓”的特征,2008年之前,滑坡发生速率随降雨量的增加而增长,而后在降雨量保持稳定的情况下,滑坡发生速率明显减缓;(2)在空间分布上,武隆滑坡集聚于西、中、东3个高发区,呈现出由西北—东南方向转向东北—西南方向的变化过程,并表现出方向性减弱和离散化的趋势;(3)在驱动因子上,降雨、地质因子和地形地貌等因子的解释力呈下降趋势,而人类活动因子的解释力不断增强,已逐渐成为影响滑坡分布的关键影响因素之一。研究成果可为三峡库区滑坡灾害防灾减灾工作部署提供依据。
    Abstract: Human activities have play an important role in the spatial distribution of landslides, accompanied by rapid urbanization. This research takes Wulong district of Chongqing as an example, the research data are 330 historical landslides from 1991 to 2015. The spatio-temporal evolution pattern of landslide was revealed, with the aid of gravity model and standard deviation ellipse model; and the driving factors of landslide distribution in three time periods, 2001—2005, 2006—2010, and 2011—2015, were analyzed using GeoDetector. The results show that: (1) In terms of temporal distribution, the cumulative landslide curve of Wulong shows the characteristics of slow-steep-slow. Before 2008, the occurrence rate of landslide increased with the increase of rainfall, and then decreased significantly when the rainfall remained stable; (2) In terms of spatial distribution, Wulong’s landslides were clustered in three hotspots, and showed a change process from northwest-southeast direction to northeast-southwest direction, with a trend of weakening directionality and dispersion; (3) In terms of driving factors, the explanatory power of factors such as rainfall, geology and geomorphology is decreasing, however, the explanatory power of human activity factors is increasing and has gradually become one of the key influencing factors on landslide distribution. The research results can provide an important support for the landslide disaster prevention and mitigation in the Three Gorges reservoir area.
  • 21世纪以来,随着国家高等教育招生规模的持续扩大,许多高校通过扩建、新建校区等方式来解决原有教育资源和发展空间不足的问题。在高校发展建设过程中,受到地层构造、降雨及动静载荷等自然与人为因素的扰动,出现不均匀地表形变现象,地表形变不仅威胁到高校基础设施安全,还为高校安全带来重大隐患。因此,研究高校地表形变的时空演化特征及其发展趋势,可为高校的校区安全评估、隐患排查、基础设施建设规划提供科学参考依据。

    地表形变监测常用的方法有传统的大地水准测量和全球导航卫星系统(Global navigation satellite system, GNSS)[1],由于这些监测方法劳动强度大,空间分辨率低及人工成本高等问题,难以实现大范围形变监测[2]。星载合成孔径雷达干涉测量(Interferometric synthetic aperture radar, InSAR)因其高覆盖、高分辨率、高精度及全天候等特点[3-4],已被广泛应用于地表形变监测[5]、地震形变监测[6]、滑坡早期识别[7]等地灾监测领域。合成孔径雷达差分干涉技术(Differential interferometric synthetic aperture radar, D-InDAR)通过引入外部DEM或三轨/四轨差分来获取地表形变信息[8],此技术在长时间跨度形变监测上存在局限性。为克服此局限性,提出了具有高精度、高空间密度、长时间尺度特点的时序InSAR技术(Time series InSAR, TSInSAR)。如Berardino等提出的小基线集技术(Small baseline subsets InSAR, SBAS-InSAR)[9],Ferretti等提出的永久散射体技术(Persistent scatterer InSAR, PS-InSAR)[10]及其相关的演变技术。2019年赵富萌等[11]采用SBAS-InSAR技术成功获取了中巴公路盖孜河谷段2016—2017年的地表形变信息。2020年潘建平等[12]设计了一种改进的SBAS-InSAR技术进行地表形变监测,取得了较好的成果。张红峰[13]等基于PS-InSAR技术提出基于分时散射体提取的改进算法,得到了非城区监测区的地表形变。时序InSAR技术能较好的克服时空失相干现象,减弱大气效应及地形相位的影响,能获取地表缓慢的形变信息[14-15]

    目前针对高校区域形变研究多使用GNSS或单一时序InSAR技术提取,少有学者利用覆盖同一区域的雷达影像结合不同时序InSAR 技术来获取高校的形变分布特征,且从多方面详细分析高校地表形变成因。本文利用SBAS-InSAR和PS-InSAR对覆盖研究区的2017年6月至2020年11的52景升轨Sentinel-1A影像分别进行处理,获取两种时序InSAR反演的形变速率及时序形变量。结合不同的时序InSAR进行地表形变监测,可交叉验证监测结果并增加可选性[15]。选用合适的形变结果,从自然、人为因素两方面对研究区地表形变成因分析。以期为高校校区规划建设、地灾防控、建筑设施安全提供参考资料,为其形变监测提供借鉴。

    西南科技大学位于四川省绵阳市(中国科技城),是四川省人民政府、国防科技工业局与教育部共建高校。现有青义校区、西山校区和城南校区三个校区,研究区位于绵阳市涪城区青义校区(校本部)。

    西南科技大学青义校区东西长2000 m,南北宽1500 m,占地 272000 m2,校舍建筑面积1150000 m2,整个校区西高东低,地形原始地面坡度10°~30°,其地理位置以及卫星遥感图像见图1。校区处于山丘缓坡地带,属浅丘斜坡地貌,区域内有地质界线通过,以灰黄和紫红色粉质黏土、砂质泥岩、细砂岩及粉质黏土夹砂质泥岩碎块为主。研究区气候温和,雨量充沛,年降雨量达 963.2 mm,降雨具有短时强降雨量大、连续数日强降雨量大和降雨时间集中等特点[16]

    图  1  研究区地理位置及卫星影像
    Figure  1.  Geographical location and satellite images of the study area

    Sentinel-1A卫星是欧洲航天局“哥白尼计划”所研制的地球观测卫星,搭载C波段合成孔径雷达天线,可全天候获取连续数据,研究过程选取Sentinel-1A作为数据源。选取时间范围从2017-06-07—2020-11-06共52景升轨Sentinel-1A影像数据进行分析,时间间隔控制在两个重访周期以内,并选取多期历史Google Earth影像对校区内新建学生公寓楼工程时空演化过程进行分析。为校正Sentinel-1A数据的轨道误差,导入精密轨道数据(Precise orbit ephemerides, POD);采用分辨率为30 m的(Shuttle radar topography mission, SRTM)DEM数据去除地形相位。同时为探讨降雨与研究区地表形变的相关性,收集了来自中国气象数据网(http://data.cma.cn/)2017—2020年共4年的绵阳站逐日降雨资料。研究数据详细参数见表1

    表  1  实验数据参数
    Table  1.  Parameters of the experimental data
    数据名称参数
    Sentinel-1A极化方式VV
    轨道方向升轨
    分辨率/m25×20
    入射角/(°)39
    重访周期/d12
    雷达波长/cm5.63
    幅宽/km250
    时间间隔2017-06-07—2020-11-06
    SRTM空间分辨率/m30
    中国气象数据网气象站56196
    下载: 导出CSV 
    | 显示表格

    常用的时序InSAR分析方法主要有三类,分别为SBAS-InSAR、PS-InSAR和混合时序InSAR[17]。选取SBAS-InSAR和PS-InSAR进行相互验证,并对比两种方法所得结果的稳健性,以此获得更加准确可靠的形变信息。为分析同种数据采用不同时序InSAR所得结果的可靠性,选取时间是2019-08-08的影像作为同一主影像。设置最大时间基线为240 d,最大空间基线占总基线45%的配置,进行影像配准得到基线图如图2

    图  2  PS-InSAR和SBAS-InSAR时空基线图
    Figure  2.  Spatiotemporal baselines of PS-InSAR and SBAS-InSAR

    干涉步骤中的相干性阈值设为0.35,以避免干涉图质量较差。两种时序InSAR基本参数设置保持相同,主要处理步骤都包括连接图生成、差分干涉处理、轨道精炼、反演估算及地理编码。SBAS-InSAR的差分干涉处理主要是相干性生成、去平、3D解缠和相位编辑,将所有图像配准到超级主影像为轨道精炼和反演估算做数据准备。PS-InSAR的差分干涉处理主要包括配准、干涉图生成、去平及振幅离差指数计算,其中振幅离差指数(D)的计算公式为:

    D=μσ (1)

    式中:μ——时序上的某个点的振幅平均值;

    σ——时序上的振幅的标准差。

    在干涉处理中,干涉图中任意像素点的对应干涉相位都由多个相位分量组成:

    ϕint=ϕtop+ϕflat+ϕatm+ϕdef+ϕnoi (2)

    式中:ϕint——干涉相位;

    ϕtop——地形相位;

    ϕflat——椭球体相位;

    ϕatm——大气相位;

    ϕdef——视线向形变相位;

    ϕnoi——噪声相位。

    时序InSAR可通过卫星轨道数据和外部DEM数据模拟得到椭球体、地形相位进行差分干涉,再经多次回归分析逐步移除其他相位成分,提取出形变信息。SBAS-InSAR和PS-InSAR的区别在于,SBAS-InSAR是将SAR影像根据空间基线大小分成若干个子集。通过最小二乘法获取单个子集的地表形变时间序列,再使用奇异值分解法(Singular value decomposition, SVD)将每个子集联合求解,从而得到完整监测时段内的地表形变时间序列[18]。PS-InSAR是利用覆盖同一区域的多景SAR影像,通过分析所有影像的幅度和相位信息,选取其中稳定性强,不易受时间失相干和空间失相干影响的点来作为永久散射体。以PS点作为分析目标进行建模,计算出每个PS点的形变信息,从而反演出整个监测区域的地表形变时间序列[19],数据处理基本流程见图3

    图  3  两种InSAR技术的基本流程图
    Figure  3.  Flow chart of two InSAR

    利用SBAS-InSAR和PS-InSAR对2017-06-07—2020-11-06期间获取的覆盖研究区的升轨Sentinel-1A影像数据进行处理,得到研究区的形变特征如图4。时序InSAR默认为雷达视线方向(Line of sight, LOS)的形变量,将LOS向形变速率除以入射角的余弦值可将形变转换为垂直方向[20],以便于后续分析。图中负值代表地表位移方向为远离卫星(即地表沉降),正值代表地表位移方向为靠近卫星(即地表抬升)。由图4知,研究区及周围地区存在明显的地表沉降,最大的沉降形变速率达15 mm/a。在两种监测结果中,大部分区域的形变趋势保持一致,主要形变区域位于研究区西北方和东南方。部分区域两种时序InSAR的监测结果存在明显差别,如图中区域A和区域B。在图4(a)中区域A和区域B形变特征明显,图4(b)中则缺失信息。主要原因是监测时间段内两区域存在工程建设地形地貌发生改变,使PS-InSAR缺乏作为永久散射体的高相干性点,造成了失相干。单从整体的形变空间分布上看,PS-InSAR技术形变细节特征明显,SBAS-InSAR监测结果连续性更好。为进一步判断两种技术的优劣,获取两种技术的统计直方图(图5)进行分析。

    图  4  2017年至2020年研究区地表垂向形变速率
    Figure  4.  Vertical surface deformation rate of the study area from 2017 to 2020
    图  5  两种InSAR形变结果的统计直方图
    Figure  5.  Statistical histograms of deformation results of two InSAR

    图5可得,两种时序InSAR的统计直方图都呈正态分布,监测结果形变速率范围在0 mm左右的矢量点数目居多,监测期间内大部分区域保持稳定状态。对比SBAS-InSAR与PS-InSAR的统计直方图,前者监测结果的矢量点数目较多,后者形变速率的分布更为离散。结合图4可看出SBAS-InSAR监测结果的形变区域更明显,形变速率的分布更为集中,更直观的反映出区域地表形变特征。综上以SBAS-InSAR的监测结果为研究对象,将PS-InSAR的监测结果作为补充验证,对研究区的形变特征进行分析。由于时序InSAR的监测结果质量受到相干性、粗差和地形等因素的共同影响,为检验监测结果的可靠性,从时序InSAR的相干性、形变速率精度、方差及标准差等方面进行验证。干涉处理时,PS-InSAR的相干性图会进行拉伸变形,难以进行准确分析,所以PS-InSAR选用形变速率精度检验结果可靠性,SBAS-InSAR则用相干性的高低检验数据可信度。

    在时序InSAR中,相干性的好坏决定干涉像对的稳定程度,相干性过低易发生时空失相干,难以提取出地表形变信息。为直观反映SBAS-InSAR的相干性高低,选取在监测时间范围内时间间隔接近的相干性图进行分析,如图6所示。图中颜色越浅区域,相干性系数值越大(值的范围为0~1),相干性越好,干涉像对则更稳定。由图可知,在时间间隔接近情况下,5—9月的相干性整体低于10月至次年3月的相干性。主要原因是10月至次年3月是属于植被非生长期,而相干性系数和植被生长周期呈负相关,植被生长越茂盛时期,相干性系数越低。且相干性系数也与时间基线呈负相关,在同一区域,时间基线越长,相干性系数越低,像对趋于失相干。故本文时序InSAR处理中,时间基线选取控制在一月以内,避免发生失相干。研究表明相干性良好,研究区的相干性皆在0.5以上,像对良好的相干性,为提取到高质量的形变信息提供了保障。

    图  6  相干性系数图
    Figure  6.  Diagram of coherence coefficient

    对PS-InSAR监测结果的可靠性,可通过形变速率精度来评定。提取出的形变速率精度值求出平均值为0.524,且方差和标准差分别为0.015和0.126,数据离散程度较小,可知PS-InSAR的形变速率精度基本稳定分布在0.5左右,证明PS-InSAR具有较高的形变速率精度,监测结果可靠性较好。但只考虑时序InSAR的相干性高低和形变速率精度不能完整的证明形变监测结果的稳健性和可信度。为进一步验证时序InSAR的形变监测结果,以下对比两种时序InSAR的时序沉降量,并结合方差和标准差分析评定。

    为验证SBAS-InSAR技术获取地表形变量的精度,收集了在2018-01-02—2020-08-15期间研究区内6个水准点的监测数据,得到水准监测点在监测期间的形变量如图7。对比水准监测结果与SBAS-InSAR结果可知,水准监测的地表形变量与SBAS-InSAR获取的地表形变量误差较小,SBAS-InSAR获取的数据与水准监测结果最大误差为4.3 mm且两者获取的形变变化趋势相近。结果表明SBAS-InSAR方法与水准监测结果一致性较好。

    图  7  SBAS-InSAR和水准监测结果对比
    Figure  7.  Comparison of SBAS-InSAR and Leveling Monitoring Results

    选取研究区范围内二者形变特征完整且较为显著的区域,提取出时序形变量见图8。在 (Statistical product service solutions) SPSS软件中使用斯皮尔曼相关性分析法计算四个区域两种时序InSAR时序形变量的相关性大小,得到两种时序InSAR的时序形变量相关性在区域1为0.590,区域2为0.773,区域3为0.728,区域4为0.584。综上,两种时序InSAR的时序形变量相关性较强,提取的时序形变量整体上趋于一致,且形变都表现为不同程度的沉降。存在略微差异,这是其不同的散射体方式导致的,整体上两种方法具有较好的一致性,间接验证了时序InSAR的可靠性。

    图  8  四个区域对应的时序形变量
    Figure  8.  Time series deformation of the four regions

    方差和标准差能较好的反应数据的稳定性及离散程度,由表2可知,两种InSAR监测结果的方差和标准差都较小,监测结果的整体偏离度低,稳定性较好。SBAS-InSAR监测结果的相干性系数均值和矢量点个数均大于PS-InSAR ,相干性系数越高,像对的相干性越好,后续反演地形形变精度也更高,矢量点个数越多,提取出的形变信息越多。且SBAS-InSAR监测结果的方差和标准差也小于PS-InSAR,表明SBAS-InSAR的监测结果相比PS-InSAR,稳健性更好,数据整体质量更高。因此为了更全面和准确的分析研究区形变原因,选择形变空间分布更显著和均衡的SBAS-InSAR监测结果做后续进一步的研究讨论。

    表  2  形变矢量结果统计
    Table  2.  Statistics of deformation vector results
    时序InSAR矢量
    点数/个
    平均速率
    /(mm·a−1
    相干性
    系数均值
    方差标准差
    SBAS-InSAR180110.7210.6081.3581.165
    PS-InSAR121440.4410.5831.3951.181
    下载: 导出CSV 
    | 显示表格

    地表沉降变形是一个长期缓慢的过程,为揭示监测期间地表的形变演化特征,利用SBAS-InSAR数据得到研究区的地表形变演化过程如图9。可以看出研究区及周围多处区域存在显著的形变,主要形变区域在研究区的西北方,且西南方和东方也存在不同程度的形变。2017—2020年间地表形变不断累积,2017年6月—2019年1月研究区及周围大部分区域处于稳定状态,2020年初形变区域显著扩大,至2020年11月6日形变量最大达45 mm。

    图  9  研究区的地表形变演化特征
    Figure  9.  Evolution characteristics of surface deformation on the campus of SWUST

    连续数日强降雨和短时强降雨是影响地质灾害发育的重要因素之一,强降雨汇聚的大量积水通过入渗地表软化岩土,增大岩土自重且降低岩土抗剪强度,促进了地面形变的发生。为探究降雨对研究区地表形变的影响,对研究区2017—2020年共四年的逐日降雨数据进行移动平均处理,得到降雨量时间序列的变化趋势如图10。再获取图4(a)中区域2、区域3和区域4的时序沉降量如图11,用以分析降雨变化趋势和时序形变量特征。对比降雨的移动平均曲线和时序形变量曲线可知,三个区域的地表形变特征和降雨变化规律整体上呈显著相关。2017年,6—8月降雨量骤增,同年10月至次年1月此间地面沉降显著,2月到6月期间降雨减少,地面发生明显抬升。2018年地表形变规律基本与2017年一致,2019年降雨量相对较少,此时间段地表形变变化不显著。2020年,6—8月降雨增加后,地表形变呈沉降趋势。究其原因是夏季降雨量骤增,汇聚的大量降水入渗地表,软化及饱和岩土,在增加岩土的自重同时降低了结构面的强度,加之人为活动与地表建筑的荷载,发生沉降现象;冬春季节降雨锐减,气温降低,岩土冻胀作用使地面抬升。且降雨导致的地表沉降和降雨规律不完全同步,是因降雨引起的地面形变一般存在滞后现象。绵阳地区冬春季节气温下降幅度较小,强降雨对地面形变的影响大于温度变化,使三个区域地表形变整体上呈现沉降趋势。综上,降雨是西南科技大学校本部地表形变产生的重要因素之一。

    图  10  绵阳2017—2020年降雨变化趋势图
    Figure  10.  Rainfall trend in Mianyang from 2017 to 2020
    图  11  区域2、区域3和区域4时序形变量
    Figure  11.  Time series deformation for region 2, region 3 and region 4

    中高层建筑施工是改变地形地貌的主要因素之一,地面沉降的演化过程会受建设施工的空间演化影响。图4中区域A和区域B在时序InSAR形变监测期间皆有中高层建筑施工影响,两区域施工建设的空间演化过程较为一致,以其中一个区域为例进行详细分析。选取覆盖研究区内区域A的历史多期光学影像对建设施工区域进行解译,得到区域A的施工建设演化过程如图12。区域A是西南科技大学学生公寓楼扩建范围, 2017年9月—2018年5月期间进行工程前期准备尚未开始地基建设,结合图8地表形变演化特征可知此时间段内地表形变的范围和幅度变化较小。2018年5月—2019年1月为土方开挖进行地基建设,期间地表形变幅度及范围缓慢增大。2019年末建筑主体已全部完工,而2020年2月—2020年11月期间地表形变范围和幅度显著增大。主要原因是地基阶段基坑土体开挖使应力释放[21],导致基坑周围土体发生位移并伴随不均匀沉降,学生公寓楼主体完工后,地面荷载骤增加之建筑主体位于斜坡面上导致形变程度进一步加大。区域B在2019年末开始施工,从地表形变演化特征(图9)可知其建筑施工前地表形变幅度和范围变化不显著。此外为从量级和时序上分析形变特点,获取区域A和区域B中心点的时序沉降规律进行说明。

    图  12  区域A工程建设空间演化过程
    Figure  12.  Spatial evolution process of project construction in region A

    图13可知,区域A整体上呈沉降趋势,在2018年5月前地表沉降幅度较小;2018年5月—2019年11月地表沉降幅度缓慢增大;2020年期间地表沉降幅度明显增大,下沉速度加快。区域B整体沉降趋势较缓,2020年1月后沉降速度略微增加,两区域时序形变规律与地表形变演化过程较为一致。综上所述,中高层建筑施工会引起研究区内一定幅度的地表形变,在对形变的发生造成影响的同时还会使形变的程度加剧。

    图  13  区域A时序形变量
    Figure  13.  Time series deformation of region A

    地表形变的发生是综合因素导致的,其中地势地貌、岩性及地层界线是产生地表形变现象的关键扰动因素。由图14可得,西南科技大学青义校区中部穿过了一条地层界线,观察发现地质界线上地表形变幅度较小且分布较少,与研究区的地表形变不显著相关。结合图15分析岩性可知,在由粉质黏土、粉土、砾石及砂黏物质为主的中更新统四级阶地冲洪积层上,地表沉降范围和幅度都较大。而在主要由砾石及砂黏物质构成的全新统冲洪积层上,除去区域B(图4)是因工程建设引起的地表沉降外,只有个别区域存在明显地表沉降。土层厚度和岩性的不均一性及地层的含水量和空隙率,是导致地表形变在空间上不均匀分布的主要原因。中更新统四级阶地冲洪积层中的粉土、粉质黏土及多层砾石等结构可压缩性较高,且校园生活用水主要为地下水,长期抽取地下水导致含水层上覆土层空隙水空隙水压力减小,破坏了岩土力学平衡,从而发生地表沉降[22]。全新统冲洪积层简单的地层构造加之区域内地下用水较少,因此区域内地表沉降现象不显著。上述表明岩性及其构成与地表形变呈显著相关,且不同的土层厚度和岩性引起的地表形变量级不同。再者研究区处于山丘缓坡地带,整体地势西高东低,由于降雨、建筑施工等原因改变了边坡原有的稳定性,斜坡的局部稳定性受破坏倾向于不稳定斜坡发展,进而促使了地表形变的发生。

    图  14  西南科技大学校本部地层界线与地表形变的叠加图
    Figure  14.  Superposition of strata boundary and surface deformation at the campus of SWUST
    图  15  AA'地质剖面图
    Figure  15.  AA' geological profile

    本文利用时序InSAR技术对覆盖西南科技大学青义校区的52景升轨Sentinel-1A影像进行了处理,获取了西南科技大学青义校区2017年6月7日—2020年10月11日的地表形变信息,对地表形变时空演化规律和诱发因素进行了详细分析,得到以下结论:

    (1)西南科技大学青义校区及周围区域在2017年6月—2020年10月存在多处显著沉降,主要沉降区域在西南科技大学青义校区的西北方,其中最大垂直沉降速率可达15 mm/a。

    (2)时序InSAR相干性及速率精度检验显示,两种时序InSAR技术获得的形变信息可靠性较高,总体结果一致性较好。SBAS-InSAR监测结果的方差和标准差皆小于PS-InSAR,SBAS-InSAR的监测结果稳健性更好,数据整体质量较高。

    (3)西南科技大学青义校区的地表形变与学生公寓楼、道路扩建等人为因素有关,自然因素中,地表沉降区与强降雨、岩性及地势地貌关联紧密,地层界线与地表形变不显著相关。

  • 图  1   研究区概况

    注:滑坡数据来自“重庆市武隆县地质灾害排查项目”;该图基于国家标准地图服务网的审图号为GS(2020)4630号的标准地图、重庆市标准地图服务网的审图号为渝S(2019)071号的标准地图制作,底图无修改,下同。

    Figure  1.   Research area

    图  2   武隆站与三峡大坝(坝前)的水位对比

    注:数据来自长江水文网。

    Figure  2.   Water level comparison between Wulong Station and Three Gorges Dam (before the dam)

    图  3   滑坡影响因子

    Figure  3.   Landslide impact factors

    图  4   滑坡累积量与降雨量的对应关系

    Figure  4.   Correspondence between landslide accumulation and rainfall

    图  5   历史滑坡点核密度估计图

    Figure  5.   Estimated nuclear density map of historical landslide sites

    图  6   历史滑坡灾害重心及方向分布特征

    Figure  6.   Historical landslide hazard center of gravity and directional distribution characteristics

    图  7   滑坡分布影响因子q值的变化过程

    Figure  7.   The process of changing q value of landslide distribution influence factors

    表  1   滑坡分布的影响影响因子分类及说明

    Table  1   Classification and description of impact factors affecting landslide distribution

    类别名称年份来源描述
    降雨年均降雨量1990—2015http://www.resdc.cn1 km×1 km格网
    地质条件工程地质岩组2002重庆市工程地质图栅格数据,1∶50万
    距背向斜轴区距离重庆市1∶50万地质图栅格数据
    距断层距离重庆市1∶50万地质图栅格数据
    地形地貌土壤类型2000http://www.resdc.cn1 km×1 km格网
    土壤侵蚀强度2000http://www.resdc.cn1 km×1 km格网
    地表起伏度2003由DEM提取30 m×30 m格网
    坡度2003由DEM提取30 m×30 m格网
    距河流距离2014http://www.geodata.cn矢量数据
    NDVI2000—2015http://www.resdc.cn1 km×1 km格网
    人类活动人口密度2000—2015http://www.resdc.cn1 km×1 km格网
    GDP2000—2015http://www.resdc.cn1 km×1 km格网
    距道路距离2000—2015http://www.geodata.cn武隆区1∶25万道路交通数据
    距采矿点距离全国矿产地数据库矢量数据
    下载: 导出CSV

    表  2   交互探测关系对应表

    Table  2   Interaction detection relationship correspondence table

    判据交互作用
    q(X1X2) < min(q(X1), q(X2))非线性减弱
    Min(q(X1), q(X2)) < q(X1X2) < max(q(X1), q(X2))单因子非线性减弱
    q(X1X2) > max(q(X1), q(X2))双因子增强
    q(X1X2) = q(X1) + q(X2)独立
    q(X1X2) > q(X1) + q(X2)非线性增强
    下载: 导出CSV

    表  3   1991—2015年武隆滑坡标准差椭圆参数变化

    Table  3   Variation of standard deviation ellipse parameters of Wulong landslide from 1991—2015

    年份1991—19951996—20002001—20052006—20102011—2015
    重心坐标107°35′E
    29°21′N
    107°32′E
    29°22′N
    107°37′E
    29°23′N
    107°43′E
    29°21′N
    107°41′E
    29°22′N
    移动方向西北东北东南西北
    方向角度/(°)101.497.588.394.477.7
    长半轴/km25.425.327.323.124.4
    短半轴/km6.511.311.413.411.9
    偏心率0.970.890.910.810.87
    下载: 导出CSV

    表  4   武隆区2005—2015年社会经济相关统计数据

    Table  4   Relevant socio-economic statistics of Wulong from 2005 to 2015

    年份200520102015
    GDP/亿元29.8872.42131.40
    人口数量/万人40.1041.2741.43
    公路里程/km115327952857
    下载: 导出CSV

    表  5   交互探测后的q

    Table  5   q-value after interaction detection

    2001—20052006—20102011—2015
    降雨∩土壤侵蚀0.505工程地质岩组∩降雨0.504降雨∩工程地质岩组0.449
    降雨∩土壤类型0.487工程地质岩组∩河流0.500GDP∩工程地质岩组0.390
    降雨∩工程地质岩组0.462工程地质岩组∩道路0.458GDP∩降雨0.318
    降雨∩NDVI0.451工程地质岩组∩
    人口密度
    0.422人口密度∩
    工程地质岩组
    0.317
    降雨∩河流0.445工程地质岩组∩GDP0.416降雨∩土壤类型0.310
    降雨∩背向斜轴区0.435工程地质岩组∩
    土壤类型
    0.402GDP∩土壤类型0.302
    降雨∩人口密度0.434工程地质岩组∩
    土壤侵蚀
    0.396人口密度∩降雨0.298
    降雨∩GDP0.431降雨∩河流0.392GDP∩道路0.293
    降雨∩断层0.403降雨∩人口密度0.388工程地质岩组∩河流0.288
    降雨∩地表起伏度0.401工程地质岩组∩NDVI0.385降雨∩道路0.272
    下载: 导出CSV
  • [1] 李松林, 许强, 汤明高, 等. 三峡库区滑坡空间发育规律及其关键影响因子[J]. 地球科学,2020,45(1):341 − 354. [LI Songlin, XU Qiang, TANG Minggao, et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Journal of Earth Science,2020,45(1):341 − 354. (in Chinese with English abstract)

    LI Songlin, XU Qiang, TANG Minggao, et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Journal of Earth Science, 2020, 45(1): 341-354. (in Chinese with English abstract)

    [2] 殷跃平, 胡瑞林. 三峡库区巴东组(T_2b)紫红色泥岩工程地质特征研究[J]. 工程地质学报,2004,12(2):124 − 135. [YIN Yueping, HU Ruilin. Engineering geological characteristics of purplish-red mudstone of middle tertiary formation at the Three Gorges Reservoir[J]. Journal of Engineering Geology,2004,12(2):124 − 135. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2004.02.003

    YIN Yueping, HU Ruilin. Engineering geological characteristics of purplish-red mudstone of middle tertiary formation at the Three Gorges Reservoir[J]. Journal of Engineering Geology, 2004, 12(2): 124-135. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2004.02.003

    [3]

    BAI S B, WANG J, LV G N, et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China[J]. Geomorphology,2010,115(1−2):23 − 31. DOI: 10.1016/j.geomorph.2009.09.025

    [4] 张帆, 王孔伟, 罗先启, 等. 长江三峡库区构造特征与滑坡分布关系[J]. 地质学报,2007,81(1):38 − 46. [ZHANG Fan, WANG Kongwei, LUO Xianqi, et al. Relationship between landslides and structural feature in Three Gorges Reservoir[J]. Acta Geological Sinica,2007,81(1):38 − 46. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5717.2007.01.006

    ZHANG Fan, WANG Kongwei, LUO Xianqi, et al. Relationship between landslides and structural feature in Three Gorges Reservoir[J]. Acta Geological Sinica, 2007, 81(1): 38-46. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5717.2007.01.006

    [5]

    DENG Q, FU M, REN X, et al. Precedent long-term gravitational deformation of large scale landslides in the Three Gorges Reservoir area, China[J]. Engineering Geology,2017,221:170 − 183. DOI: 10.1016/j.enggeo.2017.02.017

    [6] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in china since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in china since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001

    [7] 李浩, 乐琪浪, 孙向东, 等. 巫溪县西溪河北岸高位高危碎屑流滑坡特征与机理研究[J]. 水文地质工程地质,2019,46(2):13 − 20. [LI Hao, LE Qilang, SUN Xiangdong, et al. A study of the characteristics and mechanism of high-risk debris flow landslide on the northern bank of the Xixi River in Wuxi County[J]. Hydrogeology & Engineering Geology,2019,46(2):13 − 20. (in Chinese with English abstract)

    LI Hao, LE Qilang, SUN Xiangdong, et al. A study of the characteristics and mechanism of high-risk debris flow landslide on the northern bank of the Xixi River in Wuxi county[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 13-20+28. (in Chinese with English abstract)

    [8] 蒋玉冰, 曾凯波, 丁德民. 人类活动对滑坡稳定性的影响研究—以武汉市某滑坡为例[J]. 资源环境与工程,2020,34(3):69 − 74. [JIANG Yubing, ZENG Kaibo, DING Demin. Effects of human activities on landslide stability: Taking a landslide in Wuhan as an example[J]. Resources Environment & Engineering,2020,34(3):69 − 74. (in Chinese with English abstract)

    JIANG Yubing, ZENG Kaibo, DING Demin. Effects of human activities on landslide stability——taking a landslide in Wuhan as an example[J]. Resources Environment & Engineering, 2020, 34(3): 69-74. (in Chinese with English abstract)

    [9] 肖拥军, 杨昌才, 何惠军. 三峡库区黄土坡滑坡体原岩结构特征及演化模式研究[J]. 水文地质工程地质,2012,39(5):121 − 125. [XIAO Yongjun, YANG Changcai, HE Huijun. Research on landslide's original rock structure characteristics and evolution model of the Huangtupo landslide in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2012,39(5):121 − 125. (in Chinese with English abstract)

    XIAO Yongjun, YANG Changcai, HE Huijun. Research on landslide's original rock structure characteristics and evolution model of the Huangtupo landslide in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 121-125. (in Chinese with English abstract)].

    [10] 许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [XU Qiang, HUANG Runqiu, YIN Yueping, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.001

    XU Qiang, HUANG Runqiu, YIN Yueping, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: characteristics and failure mechanism[J]. Journal of Engineering Geology, 2009, 17(4): 433-444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.001

    [11] 王家成. 巴东高切坡碎石土抗剪强度参数试验研究及工程应用[D]. 宜昌: 三峡大学, 2011

    WANG Jiacheng. Experimental research on shear parameter of high cut slope gravel soil in Badong and its engineering application[D]. Yichang: China Three Gorges University, 2011. (in Chinese with English abstract)

    [12] 李华, 史文兵, 朱要强, 等. 贵州省水城县“7·23”灾难性滑坡形成机制研究[J]. 自然灾害学报,2020,29(6):188 − 198. [LI Hua, SHI Wenbing, ZHU Yaoqiang, et al. Study on the formation mechanism of "7·23" catastrophic landslide in Shuicheng County, Guizhou Province, China[J]. Journal of Natural Disasters,2020,29(6):188 − 198. (in Chinese with English abstract)

    LI Hua, SHI Wenbing, ZHU Yaoqiang, et al. Study on the formation mechanism of "7 · 23" catastrophic landslide in Shuicheng County, Guizhou Province, China[J]. Journal of Natural Disasters, 2020, 29(6): 188-198. (in Chinese with English abstract)

    [13]

    FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. DOI: 10.5194/nhess-18-2161-2018

    [14]

    LI G, LEI Y, YAO H, et al. The influence of land urbanization on landslides: An empirical estimation based on Chinese provincial panel data[J]. Science of the Total Environment,2017,595:681 − 690. DOI: 10.1016/j.scitotenv.2017.03.258

    [15] 王新胜, 滕德贵, 谢伟, 等. 山地城市滑坡灾害空间分布特征及影响因素分析[J]. 重庆大学学报(自然科学版),2020,43(8):87 − 96. [WANG Xinsheng, TENG Degui, XIE Wei, et al. Spatial distribution characteristics and influencing factors of landslide disasters in mountain cities[J]. Journal of Chongqing University (Natural Science Edition),2020,43(8):87 − 96. (in Chinese with English abstract)

    WANG Xinsheng, TENG Degui, XIE Wei, et al. Spatial distribution characteristics and influencing factors of landslide disasters in mountain cities[J]. Journal of Chongqing University(Natural Science Edition), 2020, 43(8): 87-96. (in Chinese with English abstract)

    [16]

    LI Y, WANG X, MAO H. Influence of human activity on landslide susceptibility development in the Three Gorges area[J]. Natural Hazards,2020,104(3):1 − 37.

    [17]

    CUI Y, CHENG D, CHOI C E, et al. The cost of rapid and haphazard urbanization: lessons learned from the Freetown landslide disaster[J]. Landslides,2019,16(2):1167 − 1176.

    [18] 刘睿, 周李磊, 彭瑶, 等. 三峡库区重庆段人类活动时空分布及其类型演变特征[J]. 重庆师范大学学报(自然科学版),2016,33(4):47 − 56. [LIU Rui, ZHOU Lilei, PENG Yao, et al. Spatio-temporal variations and type evolution of human activity in Three Gorges Reservoir area of Chongqing[J]. Journal of Chongqing Normal University (Natural Science),2016,33(4):47 − 56. (in Chinese with English abstract)

    LIU Rui, ZHOU Lilei, PENG Yao, et al. Spatio-temporal variations and type evolution of human activity in Three Gorges Reservoir area of Chongqing[J]. Journal of Chongqing Normal University(Natural Science), 2016, 33(4): 47-56. (in Chinese with English abstract)

    [19] 陆关祥, 李林. 重庆市滑坡、崩塌的发育规律及区域危险性程度区划[J]. 地质科学,2001,36(3):335 − 341. [LU Guanxiang, LI Lin. Developing regularity of landslide, collapse and classification of danger degree of regional geological disaster in Chongqing area[J]. Chinese Journal of Geology,2001,36(3):335 − 341. (in Chinese with English abstract) DOI: 10.3321/j.issn:0563-5020.2001.03.008

    LU Guanxiang, LI Lin. Developing regularity of landslide, collapse and classification of danger degree of regional geological disaster in Chongqing area[J]. Chinese Journal of Geology, 2001, 36(3): 335-341. (in Chinese with English abstract) DOI: 10.3321/j.issn:0563-5020.2001.03.008

    [20] 刘云, 康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):107 − 112. [LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide, rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):107 − 112. (in Chinese with English abstract)

    LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide, rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 107-112. (in Chinese with English abstract)

    [21] 吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价:以东江流域为例[J]. 自然灾害学报,2017,26(5):119 − 129. [WU Xiaoqing, LAI Chengguang, CHEN Xiaohong, et al. A landslide hazard assessment based on random forest weight: A case study in the Dongjiang River Basin[J]. Journal of Natural Disasters,2017,26(5):119 − 129. (in Chinese with English abstract)

    WU Xiaoqing, LAI Chengguang, CHEN Xiaohong et al. A landslide hazard assessment based on random forest weight: a case study in the Dongjiang River Basin[J]. Journal of Natural Disasters, 2017, 26(5): 119-129. (in Chinese with English abstract)

    [22] 黄达, 匡希彬, 罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质,2019,46(5):127 − 135. [HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology,2019,46(5):127 − 135. (in Chinese with English abstract)

    HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135. (in Chinese with English abstract)

    [23] 邓清禄, 柯于义, 郭锋. 长江三峡非正常含炭粘土沉积及其地质灾害意义[J]. 地球科学,2008,33(3):405 − 410. [DENG Qinglu, KE Yuyi, GUO Feng. Abnormal carbonic clay and its significance in relation to geological hazards in the Three Gorges Reservoir area, Yangtze River[J]. Journal of Earth Science,2008,33(3):405 − 410. (in Chinese with English abstract)

    DENG Qinglu, KE Yuyi, GUO Feng. Abnormal carbonic clay and its significance in relation to geological hazards in the Three Gorges Reservoir area, Yangtze River[J]. Journal of Earth Science, 2008, 33(3): 405-410. (in Chinese with English abstract)

    [24] 杨乐, 卢瑞娜, 李德万, 等. 遥感解译在奉节新城滑坡调查中的应用[J]. 资源环境与工程,2012,26(6):623 − 626. [YANG Le, LU Ruina, LI Dewan, et al. Application of remote sensing interpretation in landslide investigation of new town of Fengjie[J]. Resources Environment & Engineering,2012,26(6):623 − 626. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1211.2012.06.015

    YANG Le, LU Ruina, LI Dewan, et al. Application of remote sensing interpretation in landslide investigation of new town of Fengjie[J]. Resources Environment & Engineering, 2012, 26(6): 623-626. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1211.2012.06.015

    [25]

    LIN Q, YING W. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides,2018,15(3):1 − 16.

    [26] 吴树仁, 张永双, 石菊松, 等. 三峡库区重庆市丰都县滑坡灾害危险性评价[J]. 地质通报,2007,26(5):574 − 582. [WU Shuren, ZHANG Yongshuang, SHI Jusong, et al. Assessments of landslide hazards in Fengdu County, Chongqing City, Three Gorges reservoir region of the Yangtze River, China[J]. Geological Bulletin of China,2007,26(5):574 − 582. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2007.05.010

    WU Suren, ZHANG Yongshuang, SHI Jusong, et al. Assessments of landslide hazards in Fengdu County, Chongqing City, Three Gorges reservoir region of the Yangtze River, China[J]. Geological Bulletin of China, 2007, 26 (5): 574-582. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2007.05.010

    [27] 彭丽娟, 吴益平, 王飞, 等. 湖北恩施地区滑坡灾害成生规律[J]. 中国地质灾害与防治学报,2017,28(2):1 − 9. [PENG Lijuan, WU Yiping, WANG Fei, et al. Development regularity of landslides in Enshi area[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):1 − 9. (in Chinese with English abstract)

    PENG Lijuan, WU Yiping, WANG Fei, et al. Development regularity of landslides in Enshi area[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(2): 1-9. (in Chinese with English abstract)

    [28] 丁明涛, 庙成. 基于GIS的芦山地震灾区滑坡灾害风险评价[J]. 自然灾害学报,2014,23(4):81 − 90. [DING Mingtao, MIAO Cheng. GIS-based risk assessment of landslide hazards in Lushan earthquake-stricken areas[J]. Journal of Natural Disasters,2014,23(4):81 − 90. (in Chinese with English abstract)

    DING Mingtao, MIAO Cheng. GIS-based risk assessment of landslide hazards in Lushan earthquake-stricken areas[J]. Journal of Natural Disasters, 2014, 23(4): 81-90. (in Chinese with English abstract)

    [29] 樊杰, 陶岸君, 吕晨. 中国经济与人口重心的耦合态势及其对区域发展的影响[J]. 地理科学进展,2010,29(1):87 − 95. [FAN Jie, TAO Anjun, LYU Chen. The coupling mechanism of the centroids of economic gravity and population gravity and Its effect on the regional gap in China[J]. Progress in Geography,2010,29(1):87 − 95. (in Chinese with English abstract) DOI: 10.11820/dlkxjz.2010.01.012

    FAN Jie, TAO Anjun, LU Chen. The coupling mechanism of the centroids of economic gravity and population gravity and Its effect on the regional gap in China[J]. Progress in Geography, 2010, 29(1): 87-95. (in Chinese with English abstract) DOI: 10.11820/dlkxjz.2010.01.012

    [30] 熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报,2019,74(7):1374 − 1391. [XIONG Junnan, LI Jin, CHENG Weiming, et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China[J]. Acta Geographica Sinica,2019,74(7):1374 − 1391. (in Chinese with English abstract) DOI: 10.11821/dlxb201907008

    XIONG Junnan, LI Jin, CHENG Weiming, et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China[J]. Acta Geographica Sinica, 2019, 74(7): 1374-1391. (in Chinese with English abstract) DOI: 10.11821/dlxb201907008

    [31] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jingfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract) DOI: 10.11821/dlxb201701010

    WANG Jingfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. (in Chinese with English abstract) DOI: 10.11821/dlxb201701010

    [32]

    ZHANG X, NIE J, CHENG C, et al. Natural and socioeconomic factors and their interactive effects on house collapse caused by Typhoon Mangkhut[J]. International Journal of Disaster Risk Science,2021,12(1):121 − 130. DOI: 10.1007/s13753-020-00322-6

    [33]

    LIU Y, YUAN X, LIANG G, et al. Driving force analysis of the temporal and spatial distribution of flash floods in Sichuan Province[J]. Sustainability,2017,9(9):1527. DOI: 10.3390/su9091527

    [34] 支泽民, 陈琼, 张强, 等. 地理探测器在判别滑坡稳定性影响因素中的应用—以西藏江达县为例[J]. 中国地质灾害与防治学报,2021,32(2):19 − 26. [ZHI Zemin, CHEN Qiong, ZHANG Qiang, et al. Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):19 − 26. (in Chinese with English abstract)

    ZHI Zemin, CHEN Qiong, ZHANG Qiang, et al. Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26. (in Chinese with English abstract)

    [35] 胡凯衡, 魏丽, 刘双, 等. 横断山区泥石流空间格局和激发雨量分异性研究[J]. 地理学报,2019,74(11):2303 − 2313. [HU Kaiheng, WEI Li, LIU Shuang, et al. Spatial pattern of debris-flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region[J]. Acta Geographica Sinica,2019,74(11):2303 − 2313. (in Chinese with English abstract) DOI: 10.11821/dlxb201911008

    HU Kaiheng, WEI Li, LIU Shuang, et al. Spatial pattern of debris-flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region[J]. Acta Geographica Sinica, 2019, 74(11): 2303-2313. (in Chinese with English abstract) DOI: 10.11821/dlxb201911008

    [36] 王正雄, 蒋勇军, 张远嘱, 等. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报,2019,74(5):191 − 205. [WANG Zhengxiong, JIANG Yongjun, ZHANG Yuanzhu, et al. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors[J]. Acta Geographica Sinica,2019,74(5):191 − 205. (in Chinese with English abstract)

    WANG Zhengxiong, JIANG Yongjun, ZHANG Yuanzhu, et al. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors[J]. Acta Geographica Sinica, 2019, 74(5): 191-205. (in Chinese with English abstract)

    [37] 刘传正, 李铁锋, 温铭生, 等. 三峡库区地质灾害空间评价预警研究[J]. 水文地质工程地质,2004,31(4):9 − 19. [LIU Chuanzheng, LI Tiefeng, WEN Mingsheng, et al. Assessment and early warning on geo-hazards in the Three Gorges Reservoir region of Changjiang River[J]. Hydrogeology & Engineering Geology,2004,31(4):9 − 19. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2004.04.002

    LIU Chuanzheng, LI Tiefeng, WEN Mingsheng, et al. Assessment and early warning on geo-hazards in the Three Gorges Reservoir region of Changjiang River[J]. Hydrogeology and Engineering Geology, 2004, 31(4): 9-19. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2004.04.002

    [38] 董金玉, 杨继红, 伍法权, 等. 三峡库区软硬互层近水平地层高切坡崩塌研究[J]. 岩土力学,2010,31(1):151 − 157. [DONG Jinyu, YANG Jihong, WU Faquan, et al. Research on collapse of high cutting slope with horizontal soft-hard alternant strata in Three Gorges reservoir area[J]. Rock and Soil Mechanics,2010,31(1):151 − 157. (in Chinese with English abstract)

    DONG Jinyu, YANG Jihong, WU Faquan, et al. Research on collapse of high cutting slope with horizontal soft-hard alternant strata in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 2010, 31(1): 151-157. (in Chinese with English abstract)

  • 期刊类型引用(13)

    1. 徐文正,卢书强,林振,周王敏. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究. 水文地质工程地质. 2025(02): 150-163 . 百度学术
    2. 刘鹏. 新一轮找矿突破战略行动背景下地质调查发展路径. 世界有色金属. 2024(04): 93-95 . 百度学术
    3. 刘伯元,王婷婷,陈慧玲. 刍议数字时代地勘行业参与生态文明建设路径. 世界有色金属. 2024(04): 182-184 . 百度学术
    4. 岳磊,刘昌义,丛晓明,唐彬元,付江涛,邢光延,雷浩川,赵吉美,吕伟涛,胡夏嵩. 基于InSAR技术的夏藏滩滑坡区地表变形监测与分析. 水文地质工程地质. 2024(03): 158-170 . 百度学术
    5. 王东仓,何景媛. 创新金融模式下生态保护修复路径探析. 世界有色金属. 2024(06): 147-149 . 百度学术
    6. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
    7. 刘鹏. 创新视角下的生态保护修复探讨. 世界有色金属. 2024(08): 174-176 . 百度学术
    8. 刘栋永. 地勘行业战略转型背景下科学事业单位项目成本核算探究. 世界有色金属. 2024(08): 181-183 . 百度学术
    9. 陈一超,赵文博. 基于地质调查转型发展背景下创新技术应用探讨. 世界有色金属. 2024(08): 188-191 . 百度学术
    10. 亓国涛,王荣,高晓琦. 地勘单位参与生态修复行业高质量发展的路径探析. 世界有色金属. 2024(10): 178-181 . 百度学术
    11. 王婷婷,刘伯元,孔萌. 浅析矿山生态修复治理存在问题及治理方向. 世界有色金属. 2024(14): 102-104 . 百度学术
    12. 张婉娜,高乃昌. 数据可视化背景下生态修复规划实现路径. 世界有色金属. 2024(14): 190-192 . 百度学术
    13. 马梓程,陈思,熊忠招,谢菲,孙天成,沈鹏,张思琦,田晓月,刘飞. 基于机器学习协同长时序主被动遥感数据的地质灾害易发性评价. 资源环境与工程. 2023(05): 587-598 . 百度学术

    其他类型引用(4)

图(7)  /  表(5)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  256
  • PDF下载量:  809
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-04-07
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2022-06-29

目录

/

返回文章
返回