Study on the dynamic response characteristics of loess slope under traffic load based on numerical modelling
-
摘要:
为了研究黄土边坡在交通荷载作用下的动力响应规律,文章采用有限差分软件建立典型黄土边坡数值模型,对边坡变形以及不同轴载、不同速度车辆荷载作用下边坡表面和内部的竖向最大加速度、速度和位移的变化规律进行分析,结果表明:施加交通荷载后,边坡剪应变增量带由坡脚向坡顶延伸发展,有发展为潜在滑移面的可能,且边坡失稳最先从坡脚处剪切破坏开始;随着与荷载源距离逐渐增加,边坡表面和内部各监测点的竖向最大加速度、速度和位移逐渐减小;在相同速度不同轴载情况下,随着轴载的不断增大,边坡表面和内部各监测点的竖向最大速度、加速度和位移都呈增大趋势;在固定轴载不同速度情况下,坡体内部和表面各监测点的竖向最大加速度和速度随着车速的增加,基本上呈增大的趋势,位移则随着行车速度的增加而逐渐减小。研究成果对认识交通荷载对黄土边坡的动力响应以及黄土地区道路施工具有重要的理论意义和工程应用价值。
Abstract:This study aims to explore the dynamic response of loess slopes under traffic loads. By using finite difference software, a comprehensive numerical model of a typical loess slope was established. The analysis focused on understanding variations in slope deformation, vertical maximum acceleration, velocity, and displacement on the surface and inside of the slope under different axle loads and vehicle speeds. The results show that after applying traffic load, the shear strain increment zone of the slope extends from the toe to the crest. This extension indicates a potential development of the slip surface, and the instability of the slope begins with shear failure at the toe. As the distance from the load source increases, the vertical maximum acceleration, velocity, and displacement at each monitoring point on the surface and inside of the slope gradually decrease. Under the same speed and different axle load conditions, as the axle load increases, the vertical maximum velocity, acceleration, and displacement at each monitoring point on the surface and inside of the slope all show an increasing trend. Under fixed axle load and different speed conditions, the vertical maximum acceleration and velocity at each monitoring point inside and on the surface of the slope generally increase with the increase of vehicle speed, while the displacement gradually decreases with the increase of driving speed. The research findings have important theoretical significance and practical engineering application value for understanding the dynamic response of loess slopes to traffic load and road construction within loess regions.
-
Keywords:
- loess slope /
- traffic load /
- dynamic response /
- numerical modelling
-
0. 引言
随着社会经济的快速发展,公路、铁路等交通设施建设工作不断向地质环境条件复杂的山区推进,这些线路不可避免地要通过一些自然斜坡和开挖、切坡形成的人工边坡,由边坡失稳造成的人民的生命和财产损失日益严重[1 − 3]。公路、铁路边坡长期处于车辆高强度振动环境之中,不可避免的受到频率、振幅随着时间作周期性或非周期性的振动荷载作用。在振动荷载的长期循环作用下,斜坡岩土体中的原生结构面可能扩大并产生新的破裂面,导致斜坡岩土体性能弱化,形成潜在滑动面或者贯通的结构面,影响边坡的稳定性[4 − 7]。国内外对斜坡岩土体动力响应研究很多,主要以爆破冲击荷载和地震荷载作用下边坡动态响应和稳定性分析为主[8 − 13],常用的研究方法有拟静力法、Newmark法、模型试验法、数值分析法和能量分析法等 [14 − 15]。交通循环荷载具有小振幅、多循环的特点,动力响应十分复杂,目前国内外对交通循环荷载作用下土动力特性以及路基和隧道的动力响应研究较多,而对边坡动力响应研究相对较少[16 − 19]。因此,研究斜坡岩土体在交通荷载作用下的动态响应规律,合理地评价交通荷载对斜坡岩土体的影响,具有十分重要的理论意义和工程应用价值。
本文在前人研究的基础上,将交通荷载简化为半正弦波振动荷载,采用有限差分数值模拟软件,对不同条件交通循载作用下黄土边坡的动力响应规律进行分析。
1. 交通荷载模型
车辆荷载受发动机周期性振动、汽车变速引起的振动、路面不平整引起的车辆振动以及车辆轴重等因素影响,动力特性十分复杂,具有随机性、瞬时性、长期反复性等特点。受路面状况和车辆行驶速度的影响,车轮在路面某点处的作用时间为0.01~0.1 s,具有瞬时性;但是,在道路的寿命期限内,交通荷载作用又是一种循环往复的过程,具有长期反复性;并且受车辆因素影响,交通荷载作用充满了随机性。交通荷载的模拟方式可以分为恒载作用、移动恒载作用和振动移动荷载作用[20]。根据问题研究的侧重面不同,可采用经验简化模拟来满足研究需要。受汽车本身振动特性和道路结构的影响,轮胎在路面行驶时受力并不均匀,时大时小,呈现出一种波动的状态,当汽车轮迹通过路面上某点时,这个过程可以用加载和卸载的组合形式来表示[21 − 22]。交通荷载的变化用多个半正弦波的形式来表达,如图1所示。
图中每个波形代表一次荷载作用,t0表示荷载的间隔,当车辆距离监测点较远时,监测点所受应力趋近于零,当车辆逐渐驶向监测点时,应力逐渐增大,当车辆到达监测点时,应力到达峰值,此后随着车辆远去,应力逐渐变小并趋近于零,这个过程中监测点所受到的应力大小变化表现出了一个半正弦波形式,监测点所受荷载可用式(1)进行表示[21 − 22]:
$$ F(t) = p + q(t) $$ (1) 式中:p——静荷载;
q(t)——动荷载,可由如下公式确定:
$$ q(t) = {q_{\max }}{\sin^{\text{2}}}\left(\frac{\text{π} }{2} + \frac{\text{π} }{T}t\right) $$ (2) 式中:qmax——车辆附加动荷载,幅值一般小于0.3p;
T——荷载周期/s,T=12 L/v;
v——车辆速度/(m·s−1);
L——轮胎接触面的半径/m,一般取0.15 m。
若取qmax=0.2p,则交通荷载可简化为如下表达式:
$$ F(t) = p + 0.2p{\sin^{\text{2}}}\left(\frac{\text{π} }{2} + \frac{\text{π} }{T}t\right) $$ (3) 2. 数值模型
2.1 边坡算例
黄土是在第四纪干旱、半干旱条件下形成的陆相疏松堆积物,是一种极其复杂的复合体,在我国广泛分布。在自然状态下,黄土具有较高的强度、较低的压缩性和较强的结构性,其颗粒主要由粉粒组成,具有多孔性,颗粒之间的胶结物质耐水性较差,在受到一定压力或与水作用后,其结构会迅速破坏并发生显著沉降,这些特性决定了黄土边坡研究的复杂性。本文以简单的黄土边坡概化模型为例,建立数值计算模型,模拟普通道路在坡肩时,不同车辆荷载作用下边坡的动力响应。边坡模型坡高20m,坡角45°,模型左侧边界高10 m,右侧边界高30 m,底部边界长35 m,道路位于距坡面2 m的坡肩,厚0.3 m,宽4 m(图2)。其中,在坡体表面从坡肩到坡脚每隔4 m设置S1、S2、S3、S4、S5、S6 6个监测点,在道路中心点下方0,2,4,6,8,10,12 m处设置I1、I2、I3、I4、I5、I6、I7七个监测点,对斜坡体内部和表面的加速度、速度和位移进行监测。
2.2 模型参数及网格尺寸
综合考虑前人研究成果和参数反演分析确定边坡岩土体的物理力学参数[23 − 25],岩土体的物理力学参数如表1 所示。
表 1 斜坡体物理力学参数表Table 1. Physical and mechanical parameters of the slope岩土体 天然密度
/(kg·m−3)黏聚力
/kPa内摩擦角
/(°)体积模量
/MPa剪切模量
/MPa道路 2500 − − 600 360 斜坡体 1850 15 18 16.67 7.69 车辆荷载作为一种随机荷载,过往车辆重量不一,速度不一,车辆时间间隔不一。考虑到边坡上方道路为普通公路,本文交通荷载中轴载取20,40,60,80,100 kN 5种工况,速度则取20,40,60,80 km/h 4种工况。为了简化,本文考虑车辆连续作用下边坡的动力响应,车辆荷载的间隔t0取0。
为了能精确模拟振动波在斜坡体中的传播过程及斜坡的动力响应机制,数值模型网格单元的尺寸必须小于振动波最高频率时波长的1/10~1/8,最高频率所对应的波长λ可用以下公式计算[26]:
$$ \lambda = \frac{{{C_{\text{s}}}}}{{{f_{\max }}}} $$ (4) $$ {C_{\text{s}}} = \sqrt {\frac{G}{\rho}} $$ (5) 式中:fmax——输入波的最高频率/s,$f_{\mathrm{max}}=\dfrac{1}{T} $;
Cs——S波在介质中的传播速度/(km·h-1);
$\rho $——介质的密度,取
1850 kg/m3;G——剪切模量,取7.69 MPa。
T=12 L/v,轮胎接触面的半径L=0.15 m,速度20,40,60,80 km/h对应的周期分别:0.324,0.162,0.108,0.081 s,其中80 km/h的周期最小为0.081 s,根据式(4)(5)可以推导出模型允许输入的网格最大尺寸为0.52~0.65 m,综合考虑计算速度与模拟精度,本文采用0.5 m的网格间距。
2.3 本构模型及边界条件
黄土力学行为复杂,在外力的作用下,不仅产生弹性变形,还会产生不可恢复的塑性变形。因此,本文的黄土边坡模型采用弹塑性本构关系,屈服准则采用Mohr-Coulomb强度准则。道路由于结构材料均匀、产生变形较小,则采用弹性本构关系。在模拟过程中,首先约束两侧边界水平方向的位移和底部边界竖直方向的位移,使得模型在自重条件下达到平衡状态。在动力分析过程时,去掉模型道路顶部的静力约束条件,边坡模型四周设置为自由场边界,假设汽车在道路中央行驶,轮胎间距为2 m,轮胎宽度0.2 m,在道路中央两侧1 m处,施加宽度为0.2 m的交通荷载,交通荷载连续施加100个周期。阻尼则采用局部阻尼来再现能量损失。
3. 数值模拟结果及分析
3.1 边坡动力响应分析
(1)潜在滑动面分析
坡体内部受应力作用会产生不同程度的塑性变形,斜坡体(潜在)滑动面可根据剪应变增量的变化来判断,斜坡的变形破坏多沿剪应变增量发生较大变化的部位发生,剪应变增量不发生变化或者较小的部位,一般不会有潜在滑动面的产生。由斜坡体剪应变增量云图可知(图3),在天然状态下,坡体内部产生局部塑性变形,潜在滑动带呈圆弧状从坡脚逐渐向坡顶方向发展,尚未延伸到坡顶,圆弧状应变带在坡脚处剪切应变增量最大。加载轴载100 kN、速度为60 km/h车辆循环荷载后,剪应变增量带向上延伸。施加荷载与未施加荷载的应力应变对比表明:边坡受汽车循环荷载的影响,有发展为滑移面的可能,边坡的失稳最先从坡脚处的剪切破坏开始。
(2)竖直方向的加速度、速度、位移变化规律
本文对轴载100 kN、速度为60 km/h车辆通过道路中央时道路以下0,2,4,6,8,10,12 m不同深度竖向最大加速度、速度和位移随时间的变化规律进行分析(图4)。从图4可以看出,竖向最大加速度、速度时程曲线变化规律类似,在车辆循环荷载作用下,随着深度的增加,变形逐渐减小。监测到不同深度处竖向位移最大值分别为7.16,6.30,5.58,4.91,4.45,4.18,3.96 mm,其随深度的增减逐渐减小。结果表明:轴载100 kN、速度为60 km/h车辆循环荷载作用下,道路下方边坡内部竖向最大加速度、速度和位移沿深度方向衰减,衰减速度逐渐减缓并趋于稳定,车辆循环荷载引起的振动影响深度约为10 m左右,10 m以下车辆循环荷载对土体的扰动较小,最大动应力发生在作用荷载的下部。
3.2 不同车辆荷载对边坡动力响应的影响
本文分析了车辆速度为60 km/h,轴载为20,40,60,80,100 kN 5种工况下斜坡的动力响应规律。通过分析不同轴载作用下边坡表面和内部各监测点的竖向最大加速度、速度和位移的变化规律(图5),结果表明:各轴载作用下,从边坡坡肩到坡脚(从S1到S6)或道路下方随深度的增加(从I1到I7),边坡上监测点远离荷载源,监测点动力响应减弱,竖向最大加速度、速度和位移都表现为逐渐减小的趋势,并且离震源越近的点动力响应越敏感,最大加速度、最大速度的衰减的幅度越大,随着与震源距离的增加衰减幅度逐渐减小。随着车辆轴载的增大,边坡表面和内部的各个监测点的竖向最大加速度、最大速度和最大位移都呈逐渐增大的趋势,其增大的幅度也呈现出离震源越近,增大幅度越大。
3.3 车辆速度对边坡动力响应的影响
本文分析在100 kN轴载下,行车速度为20,40,60,80 km/h 4种工况条件下斜坡的动力响应规律。通过对边坡表面和内部各监测点的不同行车速度下竖向最大加速度、速度和位移进行监测(图6),结果表明:各行车速度下,边坡表面和内部各监测点的竖向最大加速度、速度和位移变化规律基本相同,都随着与动荷载距离的增加呈逐渐减小的趋势。随行车速度的增加,坡体内部监测点的竖向最大加速度和速度都而逐渐增大,但这种情况只发生在了距坡表10 m范围内,超过10 m后不同车速下的竖向最大速度、加速度都趋向于稳定,位移则随着行车速度的增加而逐渐减小,这主要是因为速度减小,汽车与斜坡体作用时间增加,道路下方坡体的沉降量增加。随行车速度的增加,边坡表面监测点的竖向最大加速度和速度的规律出现波动,但整体还是呈现为逐渐增大,坡表位移与坡体内部监测点位移规律一致,随着行车速度的增加而逐渐减小。
4. 结论
(1)在天然状态下,斜坡体内部会产生局部的塑性变形,剪应变增量带从坡脚呈圆弧状向坡中延伸,施加轴载100 kN、速度为60 km/h交通荷载后,剪应变增量带向坡顶延伸发展,边坡受汽车循环荷载的影响,有发展为滑移面的可能,并且最先从坡脚处的剪切破坏开始。
(2)在轴载100 kN、速度为60 km/h交通荷载作用下,边坡道路下方竖向最大加速度、速度和位移会随着深度的增加而不断衰减。车辆振动荷载对边坡的影响范围大约10 m左右,最大动应力产生在荷载的下部。
(3)在车辆速度为60 km/h不同轴载情况下,随着距荷载源距离的不断增大,竖向最大加速度、速度及位移逐渐减小,并且振动衰减幅度也随着距离的增大而逐渐减小。随着车辆轴载的逐渐增大,边坡斜坡表面和内部监测点的竖向最大速度、加速度和位移呈现逐渐增大的规律。
(4)在100 kN轴载不同速度情况下,随着距荷载源距离的不断增大,竖向最大加速度、速度和位移呈逐渐减小趋势。随着车速增加,坡体内部和表面竖向最大加速度和速度都逐渐增大,最大位移则随着车速的增大而逐渐减小。
(5)值得注意的是,本文以黄土边坡概化模型为例,分析了交通荷载作用下黄土边坡动力响应的普适性规律。但是,考虑到黄土的水敏性和动荷载的振动促渗作用的影响,在后续研究中将进一步结合实际黄土边坡监测数据,并考虑降雨影响,深入剖析交通荷载作用下黄土边坡的动力响应特征与规律。
-
表 1 斜坡体物理力学参数表
Table 1 Physical and mechanical parameters of the slope
岩土体 天然密度
/(kg·m−3)黏聚力
/kPa内摩擦角
/(°)体积模量
/MPa剪切模量
/MPa道路 2500 − − 600 360 斜坡体 1850 15 18 16.67 7.69 -
[1] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Current status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)] ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)
[2] 郭长宝,张永双,王涛,等. 南北活动构造带中段地质灾害与重大工程地质问题概论[J]. 地质力学学报,2017,23(5):707 − 722. [GUO Changbao,ZHANG Yongshuang,WANG Tao,et al. Discussion on geological hazards and major engineering geological problems in the middle part of the north-south active tectonic zone,China[J]. Journal of Geomechanics,2017,23(5):707 − 722. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.05.008 GUO Changbao, ZHANG Yongshuang, WANG Tao, et al. Discussion on geological hazards and major engineering geological problems in the middle part of the north-south active tectonic zone, China[J]. Journal of Geomechanics, 2017, 23(5): 707 − 722. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.05.008
[3] 简文彬,胡忠志,樊秀峰,等. 边坡对循环荷载的响应研究[J]. 岩石力学与工程学报,2008,27(12):2562 − 2567. [JIAN Wenbin,HU Zhongzhi,FAN Xiufeng,et al. Research on responses of slope under cyclic load[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2562 − 2567. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2008.12.025 JIAN Wenbin, HU Zhongzhi, FAN Xiufeng, et al. Research on responses of slope under cyclic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2562 − 2567. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.025
[4] 任权,王家鼎,谷天峰,等. 列车长持时振动引起黄土滑坡微结构变化研究[J]. 水文地质工程地质,2013,40(4):117 − 120. [REN Quan,WANG Jiading,GU Tianfeng,et al. Research on the micro-structure change in the slide-zone soil in loess landslide caused by train-induced long-term vibration[J]. Hydrogeology & Engineering Geology,2013,40(4):117 − 120. (in Chinese with English abstract)] REN Quan, WANG Jiading, GU Tianfeng, et al. Research on the micro-structure change in the slide-zone soil in loess landslide caused by train-induced long-term vibration[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 117 − 120. (in Chinese with English abstract)
[5] 言志信,刘灿,彭宁波,等. 交通荷载作用下锚固公路边坡动力响应[J]. 长安大学学报(自然科学版),2015,35(1):61 − 67. [YAN Zhixin,LIU Can,PENG Ningbo,et al. Dynamic response of anchoring highway slope under dynamic loads[J]. Journal of Chang’an University (Natural Science Edition),2015,35(1):61 − 67. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-8879.2015.01.010 YAN Zhixin, LIU Can, PENG Ningbo, et al. Dynamic response of anchoring highway slope under dynamic loads[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(1): 61 − 67. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-8879.2015.01.010
[6] 陈瑞青,张存巍. 循环荷载作用下土质边坡动力响应分析[J]. 科学技术与工程,2016,16(3):112 − 117. [CHEN Ruiqing,ZHANG Cunwei. Analysis of soil slope dynamic response under cyclic loads[J]. Science Technology and Engineering,2016,16(3):112 − 117. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2016.03.019 CHEN Ruiqing, ZHANG Cunwei. Analysis of soil slope dynamic response under cyclic loads[J]. Science Technology and Engineering, 2016, 16(3): 112 − 117. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2016.03.019
[7] 简文彬,洪儒宝,樊秀峰,等. 循环荷载下节理岩体边坡动力响应的试验研究[J]. 岩石力学与工程学报,2016,35(12):2409 − 2416. [JIAN Wenbin,HONG Rubao,FAN Xiufeng,et al. Experimental study of dynamic response of jointed rock slopes under cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2409 − 2416. (in Chinese with English abstract)] JIAN Wenbin, HONG Rubao, FAN Xiufeng, et al. Experimental study of dynamic response of jointed rock slopes under cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2409 − 2416. (in Chinese with English abstract)
[8] MA Zongyuan,LIAO Hongjian,DANG Faning,et al. Seismic slope stability and failure process analysis using explicit finite element method[J]. Bulletin of Engineering Geology and the Environment,2021,80(2):1287 − 1301. DOI: 10.1007/s10064-020-01989-3
[9] PINYOL N M,DI CARLUCCIO G,ALONSO E E. A slow and complex landslide under static and seismic action[J]. Engineering Geology,2022,297:106478. DOI: 10.1016/j.enggeo.2021.106478
[10] 贾唯龙,常晁瑜,李佩茹,等. 基于颗粒流方法的黄土地震滑坡数值模拟[J]. 地震学报,2022,44(4):677 − 687. [JIA Weilong,CHANG Chaoyu,LI Peiru,et al. Numerical simulation of earthquake-induced loess landslides based on particle flow method[J]. Acta Seismologica Sinica,2022,44(4):677 − 687. (in Chinese with English abstract)] DOI: 10.11939/jass.20210035 JIA Weilong, CHANG Chaoyu, LI Peiru, et al. Numerical simulation of earthquake-induced loess landslides based on particle flow method[J]. Acta Seismologica Sinica, 2022, 44(4): 677 − 687. (in Chinese with English abstract) DOI: 10.11939/jass.20210035
[11] DAI Jinhao,YANG Jianhua,YAO Chi,et al. Study on the mechanism of displacement mutation for jointed rock slopes during blasting excavation[J]. International Journal of Rock Mechanics and Mining Sciences,2022,150:105032. DOI: 10.1016/j.ijrmms.2021.105032
[12] 姜谙男,张权,吴洪涛,等. 基于改进局部安全度的爆破作用边坡稳定性分析[J]. 岩土力学,2019,40(增刊1):511 − 518. [JIANG Annan,ZHANG Quan,WU Hongtao,et al. Local safety methodStability analysis of slope affected by blasting based on improved [J]. Rock and Soil Mechanics,2019,40(Sup 1):511 − 518. (in Chinese with English abstract)] JIANG Annan, ZHANG Quan, WU Hongtao, et al. Local safety methodStability analysis of slope affected by blasting based on improved [J]. Rock and Soil Mechanics, 2019, 40(Sup 1): 511 − 518. (in Chinese with English abstract)
[13] 周子涵,陈忠辉,王建明,等. 爆破荷载作用下露天矿边坡稳定性的突变研究[J]. 岩土力学,2020,41(3):849 − 857. [ZHOU Zihan,CHEN Zhonghui,WANG Jianming,et al. Catastrophe analysis of open-pit slope stability under blasting load[J]. Rock and Soil Mechanics,2020,41(3):849 − 857. (in Chinese with English abstract)] ZHOU Zihan, CHEN Zhonghui, WANG Jianming, et al. Catastrophe analysis of open-pit slope stability under blasting load[J]. Rock and Soil Mechanics, 2020, 41(3): 849 − 857. (in Chinese with English abstract)
[14] 王来贵,向丽,赵娜,等. 地震作用下顺倾多弱层岩质边坡动力响应[J]. 中国地质灾害与防治学报,2021,32(6):18 − 25. [WANG Laigui,XIANG Li,ZHAO Na,et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):18 − 25. (in Chinese with English abstract)] WANG Laigui, XIANG Li, ZHAO Na, et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 18 − 25. (in Chinese with English abstract)
[15] 卞康,刘建,胡训健,等. 含顺层断续节理岩质边坡地震作用下的破坏模式与动力响应研究[J]. 岩土力学,2018,39(8):3029 − 3037. [BIAN Kang,LIU Jian,HU Xunjian,et al. Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake[J]. Rock and Soil Mechanics,2018,39(8):3029 − 3037. (in Chinese with English abstract)] BIAN Kang, LIU Jian, HU Xunjian, et al. Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake[J]. Rock and Soil Mechanics, 2018, 39(8): 3029 − 3037. (in Chinese with English abstract)
[16] 翁效林,胡继波,贾阳,等. 循环交通荷载作用下饱和重塑黄土变形特性研究[J]. 岩土工程学报,2022,44(9):1617 − 1625. [WENG Xiaolin,HU Jibo,JIA Yang,et al. Deformation characteristics of saturated remolded loess under cyclic traffic loads[J]. Chinese Journal of Geotechnical Engineering,2022,44(9):1617 − 1625. (in Chinese with English abstract)] DOI: 10.11779/CJGE202209006 WENG Xiaolin, HU Jibo, JIA Yang, et al. Deformation characteristics of saturated remolded loess under cyclic traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1617 − 1625. (in Chinese with English abstract) DOI: 10.11779/CJGE202209006
[17] 唐楚轩,刘杰,冯一诺,等. 交通荷载作用下非饱和风积沙路基动力响应研究[J]. 土木工程学报,2023,56(增刊1):194 − 202. [TANG Chuxuan,LIU Jie,FENG Yinuo,et al. Dynamic responses of unsaturated aeolian sand subgrade to traffic loads [J]. China Civil Engineering Journal,2023,56(Sup 1):194 − 202. (in Chinese with English abstract)] TANG Chuxuan, LIU Jie, FENG Yinuo, et al. Dynamic responses of unsaturated aeolian sand subgrade to traffic loads [J]. China Civil Engineering Journal, 2023, 56(Sup 1): 194 − 202. (in Chinese with English abstract)
[18] 姚志雄,吉磊,刘耀星,等. 交通荷载对浅埋群洞隧道的动力影响分析[J]. 现代隧道技术,2022,59(3):107 − 117. [YAO Zhixiong,JI Lei,LIU Yaoxing,et al. Analysis of the dynamic effect of traffic load on shallow multi-tube tunnel structure[J]. Modern Tunnelling Technology,2022,59(3):107 − 117. (in Chinese with English abstract)] YAO Zhixiong, JI Lei, LIU Yaoxing, et al. Analysis of the dynamic effect of traffic load on shallow multi-tube tunnel structure[J]. Modern Tunnelling Technology, 2022, 59(3): 107 − 117. (in Chinese with English abstract)
[19] 许旭堂,简文彬,吴能森,等. 动荷载作用下山区道路边坡耐久性研究[J]. 长江科学院院报,2019,36(1):102 − 106. [XU Xutang,JIAN Wenbin,WU Nengsen,et al. Durability of mountain road slope under dynamic loads[J]. Journal of Yangtze River Scientific Research Institute,2019,36(1):102 − 106. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20170825 XU Xutang, JIAN Wenbin, WU Nengsen, et al. Durability of mountain road slope under dynamic loads[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 102 − 106. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20170825
[20] 田飞,褚进晶. 交通荷载特性及其模拟方法研究[J]. 水利与建筑工程学报,2014,12(4):66 − 71. [TIAN Fei,CHU Jinjing. Research on traffic load characteristics and simulation methods[J]. Journal of Water Resources and Architectural Engineering,2014,12(4):66 − 71. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-1144.2014.04.012 TIAN Fei, CHU Jinjing. Research on traffic load characteristics and simulation methods[J]. Journal of Water Resources and Architectural Engineering, 2014, 12(4): 66 − 71. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2014.04.012
[21] 黄仰贤. 路面分析与设计[M]. 北京:人民交通出版社,1998. [HUANG Yangxian. Pavement analysis and design. Beijing[M]. People's Communications Publish. 1998. (in Chinese)] HUANG Yangxian. Pavement analysis and design. Beijing[M]. People's Communications Publish. 1998. (in Chinese)
[22] 柯唯. 交通荷载作用下粗粒土公路高路堤动力特性响应研究[D]. 长沙:长沙理工大学,2019. [KE Wei. Study on dynamic characteristics response of coarse-grained soil high embankment highway under traffic loading[D]. Changsha:Changsha University of Science & Technology,2019. (in Chinese with English abstract)] KE Wei. Study on dynamic characteristics response of coarse-grained soil high embankment highway under traffic loading[D]. Changsha: Changsha University of Science & Technology, 2019. (in Chinese with English abstract)
[23] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 湿陷性黄土地区建筑标准:GB 50025—2018[S]. 北京:中国建筑工业出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China,State Administration for Market Regulation. Standard for building construction in collapsible loess regions:GB 50025—2018[S]. Beijing:China Architecture & Building Press,2019. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for building construction in collapsible loess regions: GB 50025—2018[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
[24] 王壮壮,黄强兵,刘悦,等. 吕梁地区不同地层结构黄土边坡坡脚开挖效应[J]. 科学技术与工程,2020,20(7):2590 − 2597. [WANG Zhuangzhuang,HUANG Qiangbing,LIU Yue,et al. Toe excavation effect of loess slope with different stratigraphic structures in Lüliang area[J]. Science Technology and Engineering,2020,20(7):2590 − 2597. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.07.009 WANG Zhuangzhuang, HUANG Qiangbing, LIU Yue, et al. Toe excavation effect of loess slope with different stratigraphic structures in Lüliang area[J]. Science Technology and Engineering, 2020, 20(7): 2590 − 2597. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.07.009
[25] 张彬. 黄土动力反应分析及动力离心模型试验测试[D]. 西安:西安理工大学,2021. [ZHANG Bin. Dynamic response analysis and dynamic centrifugal model test of loess[D]. Xi’an:Xi’an University of Technology,2021. (in Chinese with English abstract)] ZHANG Bin. Dynamic response analysis and dynamic centrifugal model test of loess[D]. Xi’an: Xi’an University of Technology, 2021. (in Chinese with English abstract)
[26] FLAC (fast lagrangian analysis of continua) user's guide,version 5.0 [M]. Minneapolis,Minnesota:ltasca Consulting Group,Inc,2005.