Hazard analysis of debris flows based on different evaluation units and disaster entropy:A case study in Wudu section of the Bailong river basin
-
摘要: 白龙江流域为泥石流等地质灾害密集分布区。2020年8月由于强降雨激发,白龙江流域武都段发生了大规模的群发性泥石流灾害,造成严重损失。文章以白龙江流域甘肃省陇南市武都段(宕昌县两河口乡—武都区桔柑镇)为研究区,通过野外实地考察,选取流域面积、流域形状系数、平均坡度、沟谷密度、物源参照值(HI)、岩性、流域中心距活动断层距离、一小时最大降雨量、植被覆盖度作为泥石流危险性评价因子。基于灾害熵理论,分别以泥石流单沟和小流域单元作为评价单元,利用ArcGIS软件,进行区域泥石流危险性评价。分析结果表明,研究区内泥石流沟大多数都属于中、高危险性。致灾因子中岩性、物源参照值(HI)、距断层距离、植被覆盖度及平均坡度的权重最大,与实际考察结果一致。且以小流域单元作为评价单元的评价结果更符合研究区的泥石流发育情况。Abstract: The Bailong river basin is a densely distributed area of geological disasters such as debris flow. In August 2020, due to the stimulation of heavy rainfall, a large-scale group debris flow disaster occurred in Wudu section of Bailong river basin, causing serious losses. This paper takes the Wudu section (Lianghekou Township, Dangchang County to Jugan Town, Wudu District) of Longnan City in Gansu Province as the research area. Through field investigation, we selected the area of drainage basin, shape coefficient of basin, average slope, density of gully, reference value of material source (HI), lithology, distance between basin center and active fault, one hour maximum rainfall and vegetation coverage as debris flow hazard assessment factors. Taking single gully and small watershed units of debris flow as evaluation units, the regional debris flow hazard assessment is carried out by using ArcGIS software based on the theory of disaster entropy. The results show that most of the debris flows in the study area belong to medium and high hazard debris flow gullies. Some of the most heavily weighted disaster-causing factors like the weight of lithology, source reference value (HI), distance from fault, vegetation coverage and average slope are consistent with the actual investigation results. Moreover, the evaluation results of small watershed units are more consistent with the development of debris flow in the study area.
-
Keywords:
- Bailong river basin /
- debris flow /
- disaster entropy /
- watershed unit /
- hazard
-
-
表 1 数据介绍
Table 1 Data introduction
序号 数据 来源 1 DEM数据 http://www.gscloud.cn/ 2 一小时最大降雨量 甘肃省地质环境监测院 3 植被指数 http://www.geodata.cn/ 4 地质图 中国地质力学所 5 遥感影像 图新地球 表 2 研究区泥石流沟岩性分类表
Table 2 Lithology classification of debris flow gully in study area
岩性
分类坚硬块状
岩浆岩软弱中厚
层碎屑岩坚硬中厚
层碎屑岩松散软弱
堆积层及
冲洪积层较坚硬中
厚层-厚层
碳酸盐岩、
薄层板岩、
碎屑岩软弱-坚硬
中厚层-
厚层板岩、
碎屑岩赋值 1 3 5 7 8 10 表 3 泥石流沟危险性评价指标标准化分级表
Table 3 Standardized classification table of debris flow gully hazard assessment index
评价指标 标准化赋值 1 2 3 流域面积/km2 >10 <3 3~10 流域形状系数 >1.5 1.3~1.5 <1.3 平均坡度/(°) 0~20 20~30 >30 沟谷密度/(km·km−2) <0.5 0.5~1 >1 HI <0.45 >0.60 0.45~0.6 岩性因子(DSF) <5 5~7 >7 距断层距离/km >3 1~3 <1 降雨/mm <36 36~38 >38 NDVI >0.4 0.25~0.4 <0.25 表 4 评价指标灾害熵及其权重
Table 4 Evaluation index disaster entropy and its weight
评价指标 流域面积 流域形状系数 平均坡度 沟谷密度 物源参照值 岩性 距断层距离 降雨量 NDVI 灾害熵 12.994670 12.969065 13.502476 12.941899 14.539949 14.707807 13.840045 12.426344 13.758987 信息效用值 −11.994670 −11.969065 −12.502476 −11.941899 −13.539949 −13.707807 −12.840045 −11.426344 −12.758987 评价指标的权重 0.106448 0.106221 0.110954 0.105979 0.120162 0.121651 0.113950 0.101404 0.113231 表 5 评价指标灾害熵及其权重
Table 5 Evaluation index disaster entropy and its weight
评价指标 流域面积 流域形状系数 平均坡度 沟谷密度 物源参照值 岩性 距断层距离 降雨量 NDVI 灾害熵 46.777098 39.015534 42.694335 42.127049 40.254309 49.717080 45.202859 40.145965 42.355624 信息效用值 −45.777098 −38.015534 −41.694335 −41.127049 −39.254309 −48.717080 −44.202859 −39.145965 −41.355624 评价指标的权重 0.120692 0.100228 0.109927 0.108432 0.103494 0.128443 0.116541 0.103209 0.109034 -
[1] 杨兴坤, 李海东. 泥石流灾害的工程预防措施[J]. 中国水利,2014(10):54 − 55. [YANG Xingkun, LI Haidong. Engineering prevention measures of debris flow disaster[J]. China Water Resources,2014(10):54 − 55. (in Chinese) [2] 孟兴民, 陈冠, 郭鹏, 等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质,2013,33(4):1 − 15. [MENG Xingmin, CHEN Guan, GUO Peng, et al. Research of landslides and debris flows in Bailong river basin: Progress and prospect[J]. Marine Geology & Quaternary Geology,2013,33(4):1 − 15. (in Chinese with English abstract) [3] 李晓婷, 刘文龙. 模糊综合评判法在甘肃陇南武都区石门乡泥石流危险性评价中的应用[J]. 中国地质灾害与防治学报,2020,31(4):71 − 76. [LI Xiaoting, LIU Wenlong. Application of fuzzy comprehensive evaluation method to debris flow risk evaluation in Shimen Township in Wudu District of Longnan City, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):71 − 76. (in Chinese with English abstract) [4] 王高峰, 陈宗良, 毛佳睿, 等. 不同工程情景和降雨频率工况下白龙江流域泥石流危险性评价[J]. 山东科技大学学报(自然科学版),2020,39(5):30 − 40. [WANG Gaofeng, CHEN Zongliang, MAO Jiarui, et al. Debris flow risk assessment in Bailong river basin under different engineering scenarios and rainfall frequency conditions[J]. Journal of Shandong University of Science and Technology (Natural Science),2020,39(5):30 − 40. (in Chinese with English abstract) [5] 刘德玉, 贾贵义, 李松, 等. 地形因素对白龙江流域甘肃段泥石流灾害的影响及权重分析[J]. 水文地质工程地质,2019,46(3):33 − 39. [LIU Deyu, JIA Guiyi, LI Song, et al. Impacts of topographical factors on debris flows and weight analysis at the Gansu segment of the Bailongjiang river basin[J]. Hydrogeology & Engineering Geology,2019,46(3):33 − 39. (in Chinese with English abstract) [6] 蒲济林, 苏军德, 高立兵, 等. 基于GIS与AHP模型的白龙江流域泥石流危险性评价[J]. 中国水土保持,2016(5):58 − 61. [PU Jilin, SU Junde, GAO Libing, et al. Risk assessment of debris flow in Bailong river basin based on GIS and AHP model[J]. Soil and Water Conservation in China,2016(5):58 − 61. (in Chinese) DOI: 10.3969/j.issn.1000-0941.2016.05.020 [7] 高立兵, 苏军德. 基于信息熵与AHP模型的小区域泥石流危险性评价方法[J]. 水土保持研究,2017,24(1):376 − 380. [GAO Libing, SU Junde. Risk assessment method of debris flow in residential area based on information entropy and AHP Model[J]. Research of Soil and Water Conservation,2017,24(1):376 − 380. (in Chinese with English abstract) [8] 刘林通, 孟兴民, 郭鹏, 等. 基于流域单元和信息量法的白龙江流域泥石流危险性评价[J]. 兰州大学学报(自然科学版),2017,53(3):292 − 298. [LIU Lintong, MENG Xingmin, GUO Peng, et al. Assessment of debris flow hazards in the Bailongjiang river based on the watershed unit and information value method[J]. Journal of Lanzhou University (Natural Sciences),2017,53(3):292 − 298. (in Chinese with English abstract) [9] 李淑松, 邹强, 陈容, 等. 白龙江流域泥石流危险性评价[J]. 中国水土保持科学,2018,16(4):83 − 88. [LI Shusong, ZOU Qiang, CHEN Rong, et al. Hazard assessment of debris flow in Bailong river basin[J]. Science of Soil and Water Conservation,2018,16(4):83 − 88. (in Chinese with English abstract) [10] 赵艳萍. 白龙江流域泥石流分布规律及其影响因素研究[D]. 兰州: 兰州大学, 2013. ZHAO Yanping. Study on the regularity of debris flow distribution and influence factors in Bailong river basin[D]. Lanzhou: Lanzhou University, 2013. (in Chinese with English abstract)
[11] 丁继新, 周圣华, 杨志法, 等. 川藏公路然乌—东久段地质灾害定量评价: “地质灾害熵”概念的提出和应用[J]. 自然灾害学报,2005,14(4):79 − 84. [DING Jixin, ZHOU Shenghua, YANG Zhifa, et al. Quantitative assessment of geological hazards in segment between Ranwu and Dongjiu in Sichuan-Tibet highway: Presentation and application of concept of “geological hazard entropy”[J]. Journal of Natural Disasters,2005,14(4):79 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2005.04.013 [12] 向灵芝, 崔鹏, 陈洪凯, 等. 基于灾害熵的汶川震后道路泥石流敏感性分析[J]. 重庆交通大学学报(自然科学版),2017,36(5):71 − 78. [XIANG Lingzhi, CUI Peng, CHEN Hongkai, et al. Sensitivity analysis of debris flow along highway in Wenchuan County after earthquake based on hazard entropy theory[J]. Journal of Chongqing Jiaotong University (Natural Science),2017,36(5):71 − 78. (in Chinese with English abstract) [13] 庄树裕, 李广杰, 王钢城, 等. 灾害熵-可拓综合评判理论在泥石流危险性评价中的应用[J]. 安徽农业科学,2010,38(6):3075 − 3077. [ZHUANG Shuyu, LI Guangjie, WANG Gangcheng, et al. Application of entropy-extension comprehensive evaluation theory in the debris flow risk assessment[J]. Journal of Anhui Agricultural Sciences,2010,38(6):3075 − 3077. (in Chinese with English abstract) DOI: 10.3969/j.issn.0517-6611.2010.06.113 [14] 张意奉, 焦菊英, 唐柄哲, 等. 特大暴雨条件下小流域沟道的泥沙连通性及其影响因素: 以陕西省子洲县为例[J]. 水土保持通报,2019,39(1):302 − 309. [ZHANG Yifeng, JIAO Juying, TANG Bingzhe, et al. Channel sediment connectivity and influence factors in small watersheds under extremely rainstorm: A case study at Zizhou County, Shaanxi Province[J]. Bulletin of Soil and Water Conservation,2019,39(1):302 − 309. (in Chinese with English abstract) [15] 宋瑶. 北京山区洪沟道特征及预警技术研究[D]. 北京: 北京林业大学, 2016. SONG Yao. The study on channel characteristics and early warning techniques of mountain flood in Beijing[D]. Beijing: Beijing Forestry University, 2016. (in Chinese with English abstract)
[16] 张国平, 徐晶, 毕宝贵. 滑坡和泥石流灾害与环境因子的关系[J]. 应用生态学报,2009,20(3):653 − 658. [ZHANG Guoping, XU Jing, BI Baogui. Relations of landslide and debris flow hazards to environmental factors[J]. Chinese Journal of Applied Ecology,2009,20(3):653 − 658. (in Chinese with English abstract) [17] 周志华, 林维芳, 徐标. 基于GIS与信息量模型的沟谷密度与滑坡发育关系的研究[J]. 中国矿业,2012,21(1):119 − 121. [ZHOU Zhihua, LIN Weifang, XU Biao. Relationship between gully density and landslide based on GIS and information value model[J]. China Mining Magazine,2012,21(1):119 − 121. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4051.2012.01.031 [18] 梁馨月, 徐梦珍, 吕立群, 等. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报,2020,75(7):1373 − 1385. [LIANG Xinyue, XU Mengzhen, LYU Liqun, et al. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica,2020,75(7):1373 − 1385. (in Chinese with English abstract) DOI: 10.11821/dlxb202007004 [19] 陈宗良, 叶振南, 王志宏, 等. 白龙江流域中上游第四纪沉积物的发育特征及其灾害效应[J]. 水文地质工程地质,2019,46(2):29 − 36. [CHEN Zongliang, YE Zhennan, WANG Zhihong, et al. Development characteristics and disaster effect of the Quaternary sediments in the middle and upper reaches of the Bailongiang river basin[J]. Hydrogeology & Engineering Geology,2019,46(2):29 − 36. (in Chinese with English abstract) [20] 侯燕军. 甘肃省陇南市武都区北山泥石流灾害成因分析及防治措施[J]. 甘肃科技,2010,26(21):55 − 57. [HOU Yanjun. Cause analysis and prevention measures of Beishan debris flow disaster in Wudu District, Longnan City, Gansu Province[J]. Gansu Science and Technology,2010,26(21):55 − 57. (in Chinese) DOI: 10.3969/j.issn.1000-0952.2010.21.018 [21] 邹强, 唐建喜, 李淑松, 等. 基于水文响应单元的泥石流灾害易发性分区方法[J]. 山地学报,2017,35(4):496 − 505. [ZOU Qiang, TANG Jianxi, LI Shusong, et al. Susceptibility assessment method of debris flows based on hydrological response unit[J]. Mountain Research,2017,35(4):496 − 505. (in Chinese with English abstract) [22] 杨宇, 蔡英桦, 钟华介, 等. 基于集水单元的岩溶山区小流域泥石流敏感性评价: 以贵州威宁二塘河流域为例[J]. 中国地质灾害与防治学报,2019,30(5):57 − 64. [YANG Yu, CAI Yinghua, ZHONG Huajie, et al. Susceptibility assessment of debris flows in small watershed of Karst area based on catchment units: a case study in Ertang river basin, Weining County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):57 − 64. (in Chinese with English abstract) [23] 李彩侠, 马煜, 何元勋. 泥石流致灾因子敏感性分析: 以四川都江堰龙溪河流域为例[J]. 中国地质灾害与防治学报,2020,31(5):32 − 39. [LI Caixia, MA Yu, HE Yuanxun. Sensitivity analysis of debris flow to environmental factors: a case of Longxi River basin in Dujiangyan, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):32 − 39. (in Chinese with English abstract) [24] 李益敏, 杨蕾, 魏苏杭. 基于小流域单元的怒江州泥石流易发性评价[J]. 长江流域资源与环境,2019,28(10):2419 − 2428. [LI Yimin, YANG Lei, WEI Suhang. Susceptibility assessment of debris flow in Nujiang befecture based on the catchment[J]. Resources and Environment in the Yangtze Basin,2019,28(10):2419 − 2428. (in Chinese with English abstract) -
期刊类型引用(10)
1. 许光泉,章晋升,杨婷婷,李浩,贺彪,张海涛. 华北煤田南缘表生岩溶发育特征及演化过程. 安徽理工大学学报(自然科学版). 2025(01): 1-10 . 百度学术
2. 许光泉,黄耀,贺彪,杨婷婷,张海涛,何玉鹏,李浩. 淮南洞山地区古生界岩溶发育特征及形成过程研究. 皖西学院学报. 2025(02): 34-44 . 百度学术
3. 张子康,顾承串,吴基文,赵铭,詹润,邵晴晴,张缘缘. 安徽淮南舜耕山地质遗迹资源类型及特征. 高校地质学报. 2024(01): 89-99 . 百度学术
4. 杨婷婷,许光泉,何玉鹏,王凯,张著. 安徽淮南舜耕山奥陶系古溶洞发育特征及成因. 古地理学报. 2024(03): 620-631 . 百度学术
5. 杨婷婷,许光泉,张著,李浩,章晋升,贺彪. 淮南舜耕山奥陶系古岩溶发育特征及古地貌恢复. 地质论评. 2024(04): 1595-1606 . 百度学术
6. 王志恒,焦锴杰,朱为赟,黄艳辉,白泽. 基于磁场响应的淮南舜耕山断裂带分布规律研究. 科技风. 2023(15): 73-75 . 百度学术
7. 吴远斌,刘之葵,殷仁朝,雷明堂,戴建玲,罗伟权,潘宗源. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价. 中国岩溶. 2022(01): 21-33 . 百度学术
8. 吴远斌,刘之葵,殷仁朝,杨建兴,罗伟权,雷明堂,戴建玲,潘宗源. 湖南怀化盆地岩溶发育特征与分布规律. 中国岩溶. 2022(05): 759-772+807 . 百度学术
9. 詹金明. 岩溶陷落柱探查范围确定及其特征分析——以淮南煤田顾北矿为例. 地下水. 2020(03): 32-33+127 . 百度学术
10. 赖定邦. 浅谈粤北灰岩地基岩溶发育特征及应对之策. 西部资源. 2019(01): 75-76 . 百度学术
其他类型引用(10)