ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

新疆阜康五宫煤矿火区识别与动态演化分析

于浩, 黄啸, 焦博, 徐仕琪, 何浩

于浩,黄啸,焦博,等. 新疆阜康五宫煤矿火区识别与动态演化分析[J]. 中国地质灾害与防治学报,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202407005
引用本文: 于浩,黄啸,焦博,等. 新疆阜康五宫煤矿火区识别与动态演化分析[J]. 中国地质灾害与防治学报,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202407005
YU Hao,HUANG Xiao,JIAO Bo,et al. Identification and Dynamic Evolution Analysis of Fire Zone in Wugong Coal Mine, Fukang, Xinjiang, China[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202407005
Citation: YU Hao,HUANG Xiao,JIAO Bo,et al. Identification and Dynamic Evolution Analysis of Fire Zone in Wugong Coal Mine, Fukang, Xinjiang, China[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202407005

新疆阜康五宫煤矿火区识别与动态演化分析

基金项目: 新疆阜康市丁家湾一带煤田灭火关键技术方法研究(编号:XGMB202365),新疆地矿局自然资源卫星应用技术分中心建设及应用示范(编号:XGMB202255)
详细信息
    作者简介:

    于 浩(1979—),男,硕士,高级工程师。E-mail:yhaofly@163.com

    通讯作者:

    何 浩(1980—),男,博士,副教授。E-mail:58080863@qq.com

Identification and Dynamic Evolution Analysis of Fire Zone in Wugong Coal Mine, Fukang, Xinjiang, China

  • 摘要:

    地下煤炭在一定时间和空间范围内持续剧烈燃烧引发煤田火灾,会对周围生态环境带来难以控制的不利影响,准确识别煤田自燃引起的火区范围对于煤火的监测与治理具有重要意义。为研究新疆阜康市五宫煤矿火区的现状和动态演化过程,收集2010年以来6期 Aster 热红外数据,通过分裂窗算法分别反演地表温度;采用无人机获取高分辨率热红外和可见光数据,对煤火燃烧密切相关的燃烧塌陷、燃烧裂隙、采场、煤矸石堆进行遥感解译,通过拉伸热红外数据提取地表高温异常图斑,并进行野外查证。结果表明,2010年以来,五宫煤矿露天采场不断增多,由于废弃的采坑不能及时回填,或回填不彻底,煤层和煤矸石长期暴露在自然环境下,热量不断积聚、导致自燃,使得火区的数量和燃烧规模不断增大,呈现加速恶化的趋势。截至 2023年,五宫煤矿存在8处煤田火区。其中,3处为煤矸石自燃,4处为煤层燃烧,1处为灭火治理后重新复燃。利用热红外异常图斑提取、遥感解译与实地调查相结合,能够快速进行煤田火区勘查,掌握火区动态演化过程,极大地减少野外工作量,为火区预警与灾害评估、环境保护、灭火工程实施等提供科学依据和技术支撑。

    Abstract:

    Coalfield fires triggered by sustained intense combustion of underground coal within a certain time and space will bring uncontrollable adverse effects on the surrounding ecological environment, and accurate identification of the extent of the fire zone caused by spontaneous combustion in the coalfield is of great significance to the monitoring and management of coal fires. In order to study the current situation and dynamic evolution process of the fire area of Wugong coal mine in Fukang City, Xinjiang, we collected 6 Aster thermal infrared data since 2010, inverted the surface temperature through the split-window algorithm, respectively; used an unmanned aerial vehicle (UAV) to obtain high-resolution thermal infrared and visible data, and remotely sensed and deciphered the combustion collapse, combustion fissures, quarrying site, and gangue pile which are closely related to the combustion of coal fires and extracted the surface high temperature anomaly patches through stretching the thermal infrared data, and then analyzed and interpreted them. surface high-temperature anomaly patches, and carry out field checking. The results show that since 2010, the Wugong coal mine open pit has been increasing, and because the abandoned mining pit cannot be backfilled in time, or the backfilling is incomplete, the coal seams and coal gangue are exposed to the natural environment for a long time, and the heat keeps accumulating, leading to spontaneous combustion, which makes the number of fire zones and the scale of combustion increase, and shows an accelerated deterioration trend. As of 2023, there were 8 coalfield fire zones in Wugong Coal Mine. Among them, three are spontaneous combustion of coal gangue, four are coal seam combustion, and one is re-ignition after fire suppression and management. The combination of thermal infrared anomaly map spot extraction, remote sensing interpretation and field investigation can quickly survey the coalfield fire areas, master the dynamic evolution of fire areas, greatly reduce the workload in the field, and provide scientific basis and technical support for early warning and disaster assessment of the fire areas, environmental protection, and implementation of fire suppression projects.

  • 《中国地质灾害与防治学报》(双月刊)是由中国地质调查局主管,中国地质环境监测院、中国地质灾害防治与生态修复协会主办,反映地质灾害学科并向国内外公开发行的学术性刊物。由于贯彻了“双百”方针,理论与实践密切结合,充分运用地质灾害防治技术,重视办刊质量,因而受到同行的好评。欢迎广大科技人员和读者积极投稿。

    主要刊登范围:重点刊登地质灾害发生发展机理、成灾模式与应急处置、地质灾害链及风险评价、调查/监测/预警与综合防治,空天地一体化早期识别和普适型监测仪器研发,重大工程沿线地质灾害研究与防治等方面的创新性研究成果。

    本刊物主要面向国内工程地质学科发展、地质工程建设、技术方法创新、地质环境开发与保护等方面的院校教师、研究生及科技人员。期刊最初定位是服务于生产一线的野外工作者。是我国工程地质、环境地质、特别是地质灾害研究(地质灾害防治及地质环境保护)等领域的综合性学术理论与实践相结合的地质学类权威性刊物。

    理论研究与调查评价栏目:重点针对单体单灾分析研究与调查评价;

    技术方法与防治工程栏目:技术方法,是指勘察、监测、防治等具体的技术方法,不是评价方法和研究方法,这是业界约定俗成的共识;

    综合研究与区划栏目:对多灾种综合研究、区域性灾害研究和易发性、危险性和风险评价与区划。

    以简短的文字介绍写作背景和目的,以及相关领域内前人所作的工作和研究的概况(即前人研究进展的综述),说明本研究与前人研究工作的关系,目前研究的热点和存在的问题;以便读者了解该文的概貌,起导读的作用。基本内容应包括:

    (1)简要叙述研究此项工作的起因和目的(研究背景);(2)国内外对此项工作的研究现状和研究动态(并指出存在的问题);(3)强调此项研究工作拟解决现有研究中存在问题中的哪个问题,以及研究解决这些问题的重要性和意义;(4)适当说明研究假设。

    这是论文的重要部分。重点阐述两方面的内容,一是用什么做研究(即研究所用的材料),二是怎么做研究(从事研究所用的方法)。如果采用的方法是按照前人的,或者即使有所改进,也必须标注参考文献。

    不同的课题有不同的研究方法,以试验研究方法为例,其内容应包括:(1)研究的对象及其取样;(2)仪器设备的应用;(3)相关因素和无关因素的控制;(4)操作程序与方法;(5)操作性概念的界定;(6)研究结果的统计方法。针对基于地质调查的研究论文,可将第1节设置为“研究区地质背景”,其内容包括:(1)野外调查工作和试验室测试所用的技术方法或技术手段(野外工作技术路线),开展完成的主要工作(及其量);(2)所得到第一手资料情况以及开展综合研究所应用的基础数据(包括利用前人已有数据)情况;(3)室内综合研究所用的方法(技术路线)。

    结果是论文的核心(主体部分),主要论述通过试验研究得到了什么数据、规律和发现等(可包括试验和研究的结果、数据,被确定的关系,观察或得到的效果、性能等)。

    结果内容的表达:(1)数据,不用原始数据,要经统计学处理;(2)图表,用于显示规律性和对比性;(3)照片,能形象客观地表达研究结果;(4)文字,对数据、图表、照片加以说明。

    结果的写作应注意:(1)按试验所得到的事实材料进行安排,可分段、分节,可加小标题;(2)解释客观结果,不要外加作者的评价、分析和推理;(3)结果要真实性,不可将不符合主观设想的数据或其它结果随意删除;(4)因图表和照片所占篇幅较大,能用文字说明的问题,尽可能少用或不用图表或照片。

    讨论是论文的重要主体部分,是作者对研究得到的资料进行归纳、概括和探讨,提出自己的见解,评价其意义。

    讨论的内容包括:(1)对试验观察过程中各种数据或现象的理论分析和解释;(2)评估研究方法的科学性,评估自己结果的正确性和可靠性,与他人结果比较异同,并解释其原因;(3)试验结果的理论意义及对实践的指导作用和应用价值;(4)作用机制或变化规律的探讨;(5)本研究还存在的局限性以及进一步研究的建议。

    这是论文的精髓部分。要回答研究出了什么,主要内容应包括:

    (1)由研究结果所揭示的原理及其普遍性(即本研究结果说明了什么问题,得出了什么规律性的东西,解决了什么理论或实际问题);

    *(2)研究中有无例外或本论文尚难解决的问题(还有哪些问题没有解决),与以前以发表论文的异同,在理论与实践上意义;

    *(3)对进一步研究的建议。

    需要特别注意的是,结论不是摘要的简单重复。结语部分文字要简洁,逐条写出,3~4 条为宜。

    (1)论文标题需明确、精练,体现创新点。具体要求:

    ● 阐述具体,用语简洁。题目不足以概括论文内容时,可加副标题;

    ● 文题相称、确切鲜明,标题体现内容,内容说明标题;

    ● 重点突出、主题明确,突出论文创新点,高度概括,一目了然。

    (2)基金资助的研究项目,需注明资助项目来源及编号。

    (3)作者一般只列出主要参加者。第一作者和通讯作者附简介:姓名(出生年—),性别,学历,职称,主要从事工作或研究方向,E-mail。

    (4)摘要应具有独立性和自明性,即通过阅读摘要就能获得必要的信息。摘要的内容包括研究目的、方法、结果结论,也可适当增加背景和意义,500字左右。英文摘要与中文摘要内容基本一致,可以适当扩充。关键词5~8个,要严格筛选,选用实词,充分、准确、全面地反映文章的中心内容。具体要求:

    ● 目的(objective):阐述论文要解决的问题及其起源、由来(适当突出问题的重要性和目前存在的不足,指出你的论文工作要解决存在的不足中的什么问题);

    ● 方法(methods):说明论文采用的主要手段(方法),必要时介绍使用手段的方式;

    ● 结果(results):说明研究内容中得出的主要结果,得到了什么数据、规律和发现等;

    ● 结论(conclusions):说明研究结果有什么含义、影响和意义(理论意义或实用价值、推广前景等)。

    (5)全文一般不超过 10 个版面(包括图、表)。

    (6)论文需符合科技论文体裁,论点明确,论据充分,论述严谨,结论可信,语句通达,逻辑严密。

    (7)正文采用 3 级标题,即:一级标题如“2 模型建立及计算方法”;二级标题如“2.1 模型建立”;三级标题如 “2.1.1 模型建立基本原则”或“(1)模型建立基本原则”。

    (8)提供必要的图表。表格一般采用三线表,使用国家法定计量单位,采用国际标准符号。图件采用通用制图软件制作,单栏图宽不超过 8 cm,通栏图宽不超过 16 cm,图面内容主题突出、结构合理、图面清晰,图中内容要与图注和正文叙述相符。中、英文图表名齐全,图名置于图件之下,表名置于表格之上。

    (9)论文要突出反映基础和试验数据,对前人研究成果及存在问题或不足要进行充分的总结、分析。

    (10)参考文献遵循“最新、关键、必要和亲自阅读过”的原则,采用顺序编码制,在正文中用“[ 1 ]”或“[1-2]”在引用处标注。所有文献需用信息资源原语种著录,中文文献需列出英译文。

    列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。一切粗心大意、不查文献,故意不引、自鸣创新,贬低别人、抬高自己,避重就轻、故作姿态的做法都是错误的。

    (1)本刊只接收网络投稿,投稿网址为http://www.zgdzzhyfzxb.com

    (2)自收稿日起 3 个月内,编辑部通知作者稿件处理结果。退稿不附详细意见。

    (3)作者收到修改通知后 2 个月内返回修改稿。逾期(特殊原因且已向编辑部说明者除外)视为自动撤稿。

    (4)期刊不收取审稿费,按规定收取版面费和支付稿费(含印刷版、光盘版和网络版),每篇论文赠送当期刊物 2 本。

    (5)为了保证期刊正常出版,《中国地质灾害与防治学报》收取版面费,需要由作者或其所在机构、基金资助项目等支付。如果作者确无课题经费支付版面费可申请减免。申请方式:作者提交经单位科研管理部门盖章的书面申请,并提供单位科研管理部门的联系电话,编辑部经确认后即可减免。

    论文出版版面费收费标准为:每面收取300元;加急论文出版版面费收费标准为:每面收取600元。

    作者应对所投稿件拥有无可争议的著作权,且文责自负。作者应保证稿件未一稿多投,且保证我刊的首发权。稿件一旦被本刊录用,作者即将论文整体及附属于论文的图表等可许可使用的著作权(包括但不限于复制权、发行权、信息网络传播权、翻译权、汇编权),转交给本刊。许可期限为论文著作权的法定保护期,许可地域范围为全世界。作者依著作权法行使上述权利或向第三方转让上述权利时,不得损害本刊利益,如汇编入其他论文集时,必须注明曾在本刊刊出,并注明刊载年、卷、期。

    (2022 年 2 月修订)

  • 图  1   研究区位置示意图

    Figure  1.   Schematic of the location of the study area

    图  2   研究技术路线图

    Figure  2.   Research technical scheme

    图  3   五宫煤矿热红外数据直方图(2023年)

    Figure  3.   Histogram of thermal infrared data of Wugong coal mine

    图  4   五宫煤矿热红外数据反演温度图(2023年)

    Figure  4.   Inverse temperature map of thermal infrared data from the Gugong coal mine in 2023

    图  5   五宫煤矿无人机热红外地表温度图

    Figure  5.   UAV thermal infrared surface temperature map of Wugong coal mine

    图  6   燃烧裂隙与热红外影像图

    Figure  6.   Combustion cracks and thermal infrared imaging

    图  7   燃烧塌陷与热红外影像图

    Figure  7.   Combustion collapse and thermal infrared imaging

    图  8   无人机热红外异常图斑野外调查

    Figure  8.   UAV field survey of thermal infrared anomaly patches

    图  9   五宫煤矿煤田火区动态变化图

    Figure  9.   Dynamics of the fire zone in the coalfield of Wugong Coal Mine

    表  1   ASTER热红外波段辐射定标系数

    Table  1   ASTER radiative calibration coefficients for the thermal infrared band

    系数 Band10 Band11 Band12 Band13 Band14
    Gain 0.006 882 0.006 780 0.006 590 0.005 693 0.005 225
    Offset −0.006 882 −0.006 780 −0.006 590 −0.005 693 −0.005 225
    下载: 导出CSV

    表  2   地表温度异常图斑遥感解译统计表

    Table  2   Statistics of remote sensing interpretation of surface temperature anomaly patches


    图斑
    编号
    燃烧
    中心
    温度
    (°C)
    燃烧类型 解译数量 火区
    面积
    (ha)
    采场 燃烧
    塌陷
    燃烧
    裂隙
    1 w01 52.2 堆放煤矸石自燃 1 0 0 1.32
    2 w02 57.8 出露煤矸石自燃 0 0 2 0.51
    3 w03 49.3 阳坡,未见煤火燃烧
    4 w04 123.3 采场煤矸石自燃、煤层燃烧 2 7 11 3.84
    5 w05 185.6 采场煤矸石自燃、煤层燃烧 1 11 17 4.02
    6 w06 82.1 采场煤矸石自燃、煤层燃烧 1 4 3 1.5
    7 w07 84.3 煤火治理后复燃、煤层燃烧 2 3 14 8.15
    8 w08 62.4 采空塌陷燃烧、煤层燃烧 1 3 8 0.18
    9 w09 56.3 堆放煤矸石自燃 0 0 0 0.42
    下载: 导出CSV
  • [1]

    SONG Zeyang,KUENZER C. Coal fires in China over the last decade:A comprehensive review[J]. International Journal of Coal Geology,2014,133:72 − 99. DOI: 10.1016/j.coal.2014.09.004

    [2]

    KONG Biao,LI Zenghua,YANG Yongliang,et al. A review on the mechanism,risk evaluation,and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research,2017,24(30):23453 − 23470. DOI: 10.1007/s11356-017-0209-6

    [3] 梁运涛,罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报,2008,33(2):126 − 130. [LIANG Yuntao,LUO Haizhu. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China[J]. Journal of China Coal Society,2008,33(2):126 − 130. (in Chinese with English abstract)]

    LIANG Yuntao, LUO Haizhu. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China[J]. Journal of China Coal Society, 2008, 33(2): 126 − 130. (in Chinese with English abstract)

    [4]

    XU Yi,FAN Hongdong,DANG Libo. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection[J]. International Journal of Remote Sensing,2021,42(6):2220 − 2245. DOI: 10.1080/01431161.2020.1823045

    [5]

    YU Bing,SHE Jie,LIU Guoxiang,et al. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data:A case study of Midong district,Urumqi,China[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,190:144 − 164. DOI: 10.1016/j.isprsjprs.2022.06.007

    [6] 闫军. 新疆煤田火灾多发频发原因分析研究[J]. 煤炭技术,2022,41(6):162 − 163. [YAN Jun. Study on causes of frequent occurrence of coalfield fires in Xinjiang[J]. Coal Technology,2022,41(6):162 − 163. (in Chinese with English abstract)]

    YAN Jun. Study on causes of frequent occurrence of coalfield fires in Xinjiang[J]. Coal Technology, 2022, 41(6): 162 − 163. (in Chinese with English abstract)

    [7] 武建军,刘晓晨,蒋卫国,等. 新疆地下煤火风险分布格局探析[J]. 煤炭学报,2010,35(7):1147 − 1154. [WU Jianjun,LIU Xiaochen,JIANG Weiguo,et al. Spatial analysis of risk for underground coal fire in Xinjiang,China[J]. Journal of China Coal Society,2010,35(7):1147 − 1154. (in Chinese with English abstract)]

    WU Jianjun, LIU Xiaochen, JIANG Weiguo, et al. Spatial analysis of risk for underground coal fire in Xinjiang, China[J]. Journal of China Coal Society, 2010, 35(7): 1147 − 1154. (in Chinese with English abstract)

    [8] 包兴东. 新疆第五次煤田火区普查成果分析[J]. 能源与环保,2021,43(2):1 − 4. [BAO Xingdong. Analysis on results of the fifth coalfield fire area survey in Xinjiang[J]. China Energy and Environmental Protection,2021,43(2):1 − 4. (in Chinese with English abstract)]

    BAO Xingdong. Analysis on results of the fifth coalfield fire area survey in Xinjiang[J]. China Energy and Environmental Protection, 2021, 43(2): 1 − 4. (in Chinese with English abstract)

    [9] 陈晓坤,桑长波,李珍宝. 煤田火区有害气体排放的环境影响评估方法研究[J]. 安全与环境工程,2016,23(2):55 − 59. [CHEN Xiaokun,SANG Changbo,LI Zhenbao. Environment impact assessment method of harmful gas emission in coalfield fire area[J]. Safety and Environmental Engineering,2016,23(2):55 − 59. (in Chinese)]

    CHEN Xiaokun, SANG Changbo, LI Zhenbao. Environment impact assessment method of harmful gas emission in coalfield fire area[J]. Safety and Environmental Engineering, 2016, 23(2): 55 − 59. (in Chinese)

    [10] 李绪萍,邓存宝. 高温壁面与煤内自然对流传热分析[J]. 中国地质灾害与防治学报,2013,24(4):127 − 131. [LI Xuping,DENG Cunbao. High temperature wall and natural convection heat transfer in coal[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):127 − 131. (in Chinese with English abstract)]

    LI Xuping, DENG Cunbao. High temperature wall and natural convection heat transfer in coal[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 127 − 131. (in Chinese with English abstract)

    [11] 张熠斌,徐思瑜,徐誉维,等. 基于时序InSAR的吉林省煤炭采空区地表形变监测及时空演化态势分析[J/OL]. 水文地质工程地质,(2024-07-19)[2024-08-24]. [ZHANG Yibin,XU Siyu,XU Yuwei,et al. Land deformation monitoring and spatiotemporal evolution characteristics analysis of coal mine goaf in Jilin province based on time series InSAR[J]. Hydrogeology & Engineering Geology,(2024-07-19)[2024-08-24]. https://www.swdzgcdz.com/article/doi/10.16030/j.cnki.issn.1000-3665.202311058.(in Chinese with English abstract)]

    ZHANG Yibin, XU Siyu, XU Yuwei, et al. Land deformation monitoring and spatiotemporal evolution characteristics analysis of coal mine goaf in Jilin province based on time series InSAR[J]. Hydrogeology & Engineering Geology, (2024-07-19)[2024-08-24]. https://www.swdzgcdz.com/article/doi/10.16030/j.cnki.issn.1000-3665.202311058.(in Chinese with English abstract)

    [12] 徐凯磊,江晓光,万余庆,等. 煤田火区无人机热红外遥感监测技术[J]. 煤炭技术,2022,41(7):120 − 123. [XU Kailei,JIANG Xiaoguang,WAN Yuqing,et al. Thermal infrared remote sensing monitoring technology of UAV in coalfield fire area[J]. Coal Technology,2022,41(7):120 − 123. (in Chinese with English abstract)]

    XU Kailei, JIANG Xiaoguang, WAN Yuqing, et al. Thermal infrared remote sensing monitoring technology of UAV in coalfield fire area[J]. Coal Technology, 2022, 41(7): 120 − 123. (in Chinese with English abstract)

    [13] 蒋卫国,武建军,顾磊,等. 基于遥感技术的乌达煤田火区变化监测[J]. 煤炭学报,2010,35(6):964 − 968. [JIANG Weiguo,WU Jianjun,GU Lei,et al. Change monitoring in Wuda coalfield fire area based on remote sensing[J]. Journal of China Coal Society,2010,35(6):964 − 968. (in Chinese with English abstract)]

    JIANG Weiguo, WU Jianjun, GU Lei, et al. Change monitoring in Wuda coalfield fire area based on remote sensing[J]. Journal of China Coal Society, 2010, 35(6): 964 − 968. (in Chinese with English abstract)

    [14] 刘小姣,曾强. 融合遥感技术在四棵树火区煤火识别中的应用[J]. 矿业安全与环保,2023,50(6):104 − 110. [LIU Xiaojiao,ZENG Qiang. Application of fusion remote sensing technology for coal fire identification in the Sikeshu sealed fire area[J]. Mining Safety & Environmental Protection,2023,50(6):104 − 110. (in Chinese with English abstract)]

    LIU Xiaojiao, ZENG Qiang. Application of fusion remote sensing technology for coal fire identification in the Sikeshu sealed fire area[J]. Mining Safety & Environmental Protection, 2023, 50(6): 104 − 110. (in Chinese with English abstract)

    [15] 邓进昌. 煤田火灾热红外遥感反演与典型污染物排放特征分析研究[D]. 徐州:中国矿业大学,2023. [DENG Jinchang. Thermal infrared remote sensing inversion of coalfield fire and analysis of typical pollutant emission characteristics[D]. Xuzhou:China University of Mining and Technology,2023. (in Chinese with English abstract)]

    DENG Jinchang. Thermal infrared remote sensing inversion of coalfield fire and analysis of typical pollutant emission characteristics[D]. Xuzhou: China University of Mining and Technology, 2023. (in Chinese with English abstract)

    [16] 杨洁. 准南煤田水西沟火区地表环境变化监测研究[D]. 乌鲁木齐:新疆大学,2021. [YANG Jie. Study on monitoring of surface environment change in Shuixigou fire area of Zhunnan coalfield[D]. Urumqi:Xinjiang University,2021. (in Chinese with English abstract)]

    YANG Jie. Study on monitoring of surface environment change in Shuixigou fire area of Zhunnan coalfield[D]. Urumqi: Xinjiang University, 2021. (in Chinese with English abstract)

    [17] 李柱. 基于多源遥感的新疆煤田火区识别与监测分析[D]. 徐州:中国矿业大学,2023. [LI Zhu. Identification and monitoring analysis of Xinjiang coalfield fire area based on multi-source remote sensing[D]. Xuzhou:China University of Mining and Technology,2023. (in Chinese with English abstract)]

    LI Zhu. Identification and monitoring analysis of Xinjiang coalfield fire area based on multi-source remote sensing[D]. Xuzhou: China University of Mining and Technology, 2023. (in Chinese with English abstract)

    [18] 蒋卫国,武建军,顾磊,等. 基于夜间热红外光谱的地下煤火监测方法研究[J]. 光谱学与光谱分析,2011,31(2):357 − 361. [JIANG Weiguo,WU Jianjun,GU Lei,et al. Monitoring method of underground coal fire based on night thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis,2011,31(2):357 − 361. (in Chinese with English abstract)]

    JIANG Weiguo, WU Jianjun, GU Lei, et al. Monitoring method of underground coal fire based on night thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis, 2011, 31(2): 357 − 361. (in Chinese with English abstract)

    [19] 解廷堃. 基于无人机技术的安家岭露天矿内排土场火区遥感探测[J]. 露天采矿技术,2022,37(5):47 − 49. [XIE Tingkun. Remote sensing detection of fire area in dump of Anjialing Open-pit Mine based on UAV technology[J]. Opencast Mining Technology,2022,37(5):47 − 49. (in Chinese)]

    XIE Tingkun. Remote sensing detection of fire area in dump of Anjialing Open-pit Mine based on UAV technology[J]. Opencast Mining Technology, 2022, 37(5): 47 − 49. (in Chinese)

    [20] 李峰,梁汉东,赵小平,等. 基于ASTER影像的乌达火区遥感监测研究[J]. 煤矿安全,2016,47(11):15 − 18. [LI Feng,LIANG Handong,ZHAO Xiaoping,et al. Remote sensing monitoring research on coal fire in Wuda Mine by ASTER images[J]. Safety in Coal Mines,2016,47(11):15 − 18. (in Chinese with English abstract)]

    LI Feng, LIANG Handong, ZHAO Xiaoping, et al. Remote sensing monitoring research on coal fire in Wuda Mine by ASTER images[J]. Safety in Coal Mines, 2016, 47(11): 15 − 18. (in Chinese with English abstract)

    [21] 毛克彪,唐华俊,陈仲新,等. 一个从ASTER数据中反演地表温度的劈窗算法[J]. 遥感信息,2006,21(5):7 − 11. [MAO Kebiao,TANG Huajun,CHEN Zhongxin,et al. A split-window algorithm for retrieving land-surface temperature from ASTER data[J]. Remote Sensing Information,2006,21(5):7 − 11. (in Chinese with English abstract)]

    MAO Kebiao, TANG Huajun, CHEN Zhongxin, et al. A split-window algorithm for retrieving land-surface temperature from ASTER data[J]. Remote Sensing Information, 2006, 21(5): 7 − 11. (in Chinese with English abstract)

    [22]

    YAMAGUCHI Y,FUJISADA H,KUDOH M,et al. ASTER instrument characterization and operation scenario[J]. Advances in Space Research,1999,23(8):1415 − 1424. DOI: 10.1016/S0273-1177(99)00293-8

    [23] 南鹏,秦其明,姚云军. 地表温度异常机理及热红外遥感监测——以河南焦作煤层气富集区为例[J]. 北京大学学报(自然科学版),2009,45(1):137 − 143. [NAN Peng,QIN Qiming,YAO Yunjun. Land surface temperature anomalies and monitoring through thermal remote sensing:A case of coal bed methane area at Jiaozuo,Henan Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2009,45(1):137 − 143. (in Chinese)]

    NAN Peng, QIN Qiming, YAO Yunjun. Land surface temperature anomalies and monitoring through thermal remote sensing: A case of coal bed methane area at Jiaozuo, Henan Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 137 − 143. (in Chinese)

    [24] 王俊虎,张杰林,王丽娟. ASTER热红外影像温度反演及其应用[C]//中国冶金矿山企业协会,中钢集团马鞍山矿山研究院. 2011年中国矿业科技大会论文集. 《金属矿山》编辑部(Editorial Office of Metal Mine),2011:5. [WANG junhu,ZHANG jielin,WANG lijuan. ASTER thermal infrared image temperature inversion and its applications[C]. METAL MINE,22011:5. (in Chinese)]

    WANG junhu, ZHANG jielin, WANG lijuan. ASTER thermal infrared image temperature inversion and its applications[C]. METAL MINE, 22011: 5. (in Chinese)

    [25]

    CARLSON T N,RIPLEY D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment,1997,62(3):241 − 252. DOI: 10.1016/S0034-4257(97)00104-1

    [26]

    JIMÉNEZ-MUÑOZ J C,SOBRINO J A,GILLESPIE A,et al. Improved land surface emissivities over agricultural areas using ASTER NDVI[J]. Remote Sensing of Environment,2006,103(4):474 − 487. DOI: 10.1016/j.rse.2006.04.012

    [27] 邱程锦,王坚,刘立聪,等. 遥感技术在乌达煤田火灾监测中的应用[J]. 煤炭工程,2012,44(8):130 − 133. [QIU Chengjin,WANG Jian,LIU Licong,et al. Remote sensing technology applied to fire disaster monitoring and measuring of Wuda Coalfield[J]. Coal Engineering,2012,44(8):130 − 133. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0959.2012.08.047

    QIU Chengjin, WANG Jian, LIU Licong, et al. Remote sensing technology applied to fire disaster monitoring and measuring of Wuda Coalfield[J]. Coal Engineering, 2012, 44(8): 130 − 133. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0959.2012.08.047

    [28] 朱川曲,黄友金,芮国相,等. 采动作用下煤矿区地表裂缝发育机理与特征分析[J]. 中国地质灾害与防治学报,2017,28(4):47 − 52. [ZHU Chuanqu,HUANG Youjin,RUI Guoxiang,et al. Developmental of ground fissure in coal mine areas due to mining[J]. The Chinese Journal of Geological Hazard and Control,2017,28(4):47 − 52. (in Chinese with English abstract)]

    ZHU Chuanqu, HUANG Youjin, RUI Guoxiang, et al. Developmental of ground fissure in coal mine areas due to mining[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(4): 47 − 52. (in Chinese with English abstract)

    [29] 王璟睿,魏辛源,李明诗,等. 多时相Landsat影像地表亮温辐射归一化方法[J]. 遥感信息,2016,31(2):86 − 92. [WANG Jingrui,WEI Xinyuan,LI Mingshi,et al. Normalization method of surface brightness temperature radiation from multi-temporal Landsat images[J]. Remote Sensing Information,2016,31(2):86 − 92. (in Chinese with English abstract)]

    WANG Jingrui, WEI Xinyuan, LI Mingshi, et al. Normalization method of surface brightness temperature radiation from multi-temporal Landsat images[J]. Remote Sensing Information, 2016, 31(2): 86 − 92. (in Chinese with English abstract)

图(9)  /  表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  12
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-10-08
  • 录用日期:  2024-12-07
  • 网络出版日期:  2025-03-05

目录

/

返回文章
返回