ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

西藏波密茶隆隆巴曲高位地质灾害类型及发育特征

张田田, 殷跃平, 李滨, 贺凯, 王猛, 赵超英, 刘晓杰

张田田, 殷跃平, 李滨, 贺凯, 王猛, 赵超英, 刘晓杰. 西藏波密茶隆隆巴曲高位地质灾害类型及发育特征[J]. 中国地质灾害与防治学报, 2021, 32(3): 9-16. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02
引用本文: 张田田, 殷跃平, 李滨, 贺凯, 王猛, 赵超英, 刘晓杰. 西藏波密茶隆隆巴曲高位地质灾害类型及发育特征[J]. 中国地质灾害与防治学报, 2021, 32(3): 9-16. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02
Tiantian ZHANG, Yueping YIN, Bin LI, Kai HE, Meng WANG, Chaoying ZHAO, Xiaojie LIU. Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 9-16. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02
Citation: Tiantian ZHANG, Yueping YIN, Bin LI, Kai HE, Meng WANG, Chaoying ZHAO, Xiaojie LIU. Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 9-16. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02

西藏波密茶隆隆巴曲高位地质灾害类型及发育特征

基金项目: 中国地质调查局地质调查项目(DD20211540)
详细信息
    作者简介:

    张田田(1995-),男,博士研究生,主要从事地质灾害防治研究工作。E-mail:1297385717@qq.com

    通讯作者:

    殷跃平(1960-),男,研究员,博士生导师,主要从事地质灾害防治技术研究工作。E-mail:yyueping@mail.cgs.gov.cn

  • 中图分类号: P694

Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet

  • 摘要: 茶隆隆巴曲位于帕隆藏布右岸,陡变地形孕育了大量高位地质灾害,威胁下游线性工程。采用多源、多期次高分辨率遥感数据,建立高位地质灾害遥感解译标志,厘定了研究区高位地质灾害类型,并详细阐述了其发育特征。结果表明,研究区主要地质灾害类型包括高位冰崩、高位崩塌、高位滑坡。其中高位冰崩发育3处,均位于沟谷上游南坡海拔5000 m斜坡,面积在15×104 m2以上。高位崩塌体发育19处,多分布于沟谷中游及上游主沟两侧高陡岸坡,北坡多于南坡。高位滑坡发育2处,位于沟谷上游,滑体以冰碛物为主。上述高位地质灾害在强震或强降雨作用下,极易发生失稳、堵沟,且堵沟后极易诱发洪水、泥石流等次生灾害链,对下游帕隆藏布造成堵江风险。
    Abstract: Chalonglongbaqu gully is located on the right bank of Parlung Zangbo. The steeply changing topography has bred a large number of high-level geological disasters, threatening the downstream linear engineering. Therefore, this paper uses multi-source and multi-phase high-resolution remote sensing data to establish remote sensing interpretation signs of high-level geological disasters, determines the types of high-level geological disasters in the study area, and elaborates their development characteristics. The results show that the main types of geological disasters in the study area include high-level ice avalanches, high-level avalanches, and high-level landslides. Among them, there are 3 high-level ice avalanches, all of which are located on a slope with an altitude of 5000 m above the south slope of the upper reaches of the valley, with an area of more than 15×104 m2. There are 19 high-level avalanches, which are mostly distributed in the middle reaches of the valley and high and steep bank slopes on both sides of the upper main ditch. The northern slope is more than the southern slope. There are two high-level landslides located in the upper reaches of the valley, and the landslide is dominated by moraines. Under the action of strong earthquakes or heavy rainfall, the above-mentioned high-level geological disasters are prone to instability and blockage of ditch. After blocking the ditch, it is easy to induce secondary disaster chains such as floods and mudslides, which will cause the risk of blocking the river downstream of Parlung Zangbo.
  • 图  1   研究区三维遥感地形(左)及地层岩性分布图(右)

    Figure  1.   Three-dimensional remote sensing topography (left) and stratum lithology distribution map (right) of the study area

    图  2   茶隆隆巴曲I-I′工程地质剖面示意图

    Figure  2.   Chalong Long Baqu I-I′ schematic diagram of engineering geological section

    图  3   研究区高位地质灾害分布图

    Figure  3.   Distribution map of high-level geological disasters in the study area

    图  4   BC01冰崩堆积体多期光学遥感解译

    Figure  4.   Multi-phase optical remote sensing interpretation of BC01 ice avalanche deposits

    图  5   BC02冰崩体多期遥感影像

    Figure  5.   Multi-phase remote sensing image of BC02 ice avalanche

    图  6   BC03冰崩体多期遥感影像

    Figure  6.   Multi-phase remote sensing image of BC03 ice avalanche

    图  7   冰崩区InSAR形变速率图

    Figure  7.   InSAR deformation rate diagram in the ice avalanche zone

    图  8   B002、B003、B004高位崩塌危岩体影像图

    Figure  8.   Images of dangerous rock masses of B002, B003, and B004 high-level collapse

    图  9   B009、B011、B016高位崩塌危岩体影像图

    Figure  9.   Image of dangerous rock masses of B009, B011, and B016 high-level collapse

    表  1   研究区光学遥感数据一览表

    Table  1   Summary of optical remote sensing data in the study area

    序号日期数据来源分辨率备注
    12013-10-11资源三号卫星全色2.1 m,多光谱5.8 m
    22015-07-25高分一号全色2 m,多光谱8 m
    32016-12-22资源三号卫星全色2.1 m,多光谱5.8 m
    42019-11-07高分一号全色2 m,多光谱8 m
    5Google地球2.0 m融合数据
    62020-08-18无人机航空
    正射影像
    0.5 m沟道中下部
    72020-08-18无人机航空
    倾斜影像
    0.5 m沟道中下部
    下载: 导出CSV

    表  2   高位冰崩发育特征

    Table  2   Development characteristics of high ice avalanche

    编号位置前缘高程/m后缘高程/m前后缘高差/m落差/m面积/m2
    BC01南坡3692520815162983719633
    BC02南坡449049734832748204033
    BC03南坡447148784072653185347
    下载: 导出CSV

    表  3   研究区典型高位崩塌发育特征

    Table  3   Development characteristics of typical high-level avalanches in the study area

    编号位置崩源区面积/m2崩塌堆积区面积/m2总体积/m3落差/m
    B002南坡88912630291.50×1061000
    B003南坡558945649810.8×1041400
    B004南坡122602564982.15×1061500
    B009北坡284287834144.04×1061000
    B011北坡1589463971915.14×106880
    B016北坡53017173520.35×1061100
    下载: 导出CSV
  • [1] 殷跃平. 西藏波密易贡高速巨型滑坡概况[J]. 中国地质灾害与防治学报,2000,11(2):1. [YIN Yueping. Overview of giant landslides on the Bomi-Yigong Expressway in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2000,11(2):1. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.02.001
    [2] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Research on the characteristics and disaster mitigation of giant landslides on the Bomi-Yigong Expressway in Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2000.04.003
    [3] 鲁安新, 邓晓峰, 赵尚学, 等. 2005 年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土,2006,28(6):956 − 960. [LU Anxin, DENG Xiaofeng, ZHAO Shangxue, et al. Analysis of the causes of the debris flow outbreak in the Guxiang Gully, Bomi, Tibet in 2005[J]. Glaciology and Geocryology,2006,28(6):956 − 960. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0240.2006.06.023
    [4] 陶明刚. Landsat-TM遥感影像岸线变迁解译研究—以九龙江河口地区为例[J]. 水文地质工程地质,2006,33(1):107 − 110. [TAO Minggang. Research on interpretation of shoreline changes of Landsat-TM remote sensing image: Taking Jiulong River Estuary as an example[J]. Hydrogeology & Engineering Geology,2006,33(1):107 − 110. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2006.01.028
    [5] 薛东剑, 张东辉, 何政伟. 多源遥感影像融合技术在地质灾害调查中的应用[J]. 遥感技术与应用,2011,26(5):664 − 669. [XUE Dongjian, ZHANG Donghui, HE Zhengwei. Application of multi-source remote sensing image fusion technology in geological disaster investigation[J]. Remote Sensing Technology and Application,2011,26(5):664 − 669. (in Chinese with English abstract) DOI: 10.11873/j.issn.1004-0323.2011.5.664
    [6] 方成, 孙晓明, 康慧, 等. 遥感技术在曹妃甸海岸带地质环境调查中的应用[J]. 水文地质工程地质,2015,42(3):119 − 127. [FANG Cheng, SUN Xiaoming, KANG Hui, et al. Application of remote sensing technology in the geological environment investigation of Caofeidian coastal zone[J]. Hydrogeology & Engineering Geology,2015,42(3):119 − 127. (in Chinese with English abstract)
    [7]

    LAUKNES T R, PIYUSH S A, DEHLS J F, et al. Detailedrockslidemapping in northern norway with small baseline and persistent scatterer interferometric SAR time series methods[J]. Remote Sensing of Environment,2010,114:2097 − 2109. DOI: 10.1016/j.rse.2010.04.015

    [8]

    FRANCESCA B, IVAN C, PAOLO M, et al. Displacement patterns of a landslide affected by human activities: Insightsfromground-based InSAR monitoring[J]. Natural Hazards,2011,59:1377 − 1396. DOI: 10.1007/s11069-011-9840-6

    [9]

    HU X, WANG T, PIERSON T C, et al. Detecting seasonal landslide movement within the cascade landslide complex(Washington) using time-series SAR imagery[J]. RemoteSensing of Environment,2016,187:49 − 61.

    [10] 孙家抦. 遥感原理与应用[M]. 武汉: 武汉大学出版社, 2003.

    SUN Jiabing. Principle and application of remote sensing [M]. Wuhan: Wuhan University Press, 2003. (in Chinese)

    [11] 刘佳, 赵海军, 马凤山, 等. 基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(4):63 − 70. [LIU Jia, ZHAO Haijun, MA Fengshan, et al. Risk assessment of G109 Lhasa-Naqu Debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63 − 70. (in Chinese with English abstract)
    [12] 王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. esearches on the baige landslide at Jinshajiang river, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)
    [13] 杨军杰, 张志, 王旭, 等. 汶川县地震次生山地地质灾害遥感调查[J]. 山地学报,2008,26(6):755 − 760. [YANG Junjie, ZHANG Zhi, WANG Xu, et al. Remote sensing survey of secondary mountain geological disasters in Wenchuan County[J]. Journal of Mountain Research,2008,26(6):755 − 760. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2008.06.017
    [14] 王猛, 王军, 江煜, 等. 汶川地震地质灾害遥感调查与空间特征分析[J]. 地球信息科学学报,2010,12(4):480 − 486. [WANG Meng, WANG Jun, JIANG Yu, et al. Wenchuan Earthquake Geological Disaster Remote Sensing Investigation and Spatial Feature Analysis[J]. Journal of Geo-Information Science,2010,12(4):480 − 486. (in Chinese with English abstract) DOI: 10.3724/SP.J.1047.2010.00480
    [15] 梁京涛, 成余粮, 王军, 等. 基于无人机遥感技术的汶川震区典型高位泥石流动态监测—以绵竹文家沟泥石流为例[J]. 中国地质灾害与防治学报,2013,24(3):54 − 61. [LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Dynamic monitoring of typical high-level debris flow in Wenchuan earthquake area based on UAV remote sensing technology: taking Wenjiagou debris flow in Mianzhu as an example[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):54 − 61. (in Chinese with English abstract)
  • 期刊类型引用(10)

    1. 陈亮,宋银,杨林,巴净慧,陈典. 德钦县楚巴崩塌特征分析及防治措施研究. 昆明冶金高等专科学校学报. 2024(04): 1-8 . 百度学术
    2. 邓华锋,骆祚森,张景昱,周美玲,李建林. 库岸边坡消落带水-岩作用研究进展与展望. 三峡大学学报(自然科学版). 2023(05): 95-104 . 百度学术
    3. 胡雷,张鹏,黄波林. 三峡库区典型岩溶岸坡危岩体失稳模式和长期稳定性分析. 中国地质灾害与防治学报. 2023(05): 64-73 . 本站查看
    4. 胡刘洋,张鹏,黄波林. 三峡库区消落带岩体劣化下危岩体长期变形破坏机理——以冠木岭为例. 工程地质学报. 2023(06): 1891-1900 . 百度学术
    5. 赵志男,李滨,贺凯,殷跃平,高杨. 西南山区柱状危岩体基座压裂溃屈断裂力学解析. 岩石力学与工程学报. 2022(S2): 3132-3140 . 百度学术
    6. 王林峰,程平,夏万春,唐宁. 化学及干湿循环作用下泥灰岩损伤劣化特性分析. 防灾减灾工程学报. 2022(05): 976-985 . 百度学术
    7. 黄波林,殷跃平,李滨,白林丰,秦臻. 柱状危岩体坐落式崩塌产生涌浪的简化数值模型与校验. 岩土力学. 2021(08): 2269-2278 . 百度学术
    8. 张全,黄波林,郑嘉豪,赵海林,冯万里,陈小婷. 柱状危岩体压溃式崩塌产生涌浪预测分析. 岩土力学. 2021(10): 2845-2854 . 百度学术
    9. 蒋文明,王鲁琦,赵鹏,黄波林,张枝华,胡明军. 三峡库区箭穿洞危岩体变形破坏模式与防治效果分析. 中国地质灾害与防治学报. 2021(05): 105-112 . 本站查看
    10. 黄波林,王健. 颗粒柱体崩塌涌浪产生机制研究. 岩石力学与工程学报. 2020(S2): 3496-3504 . 百度学术

    其他类型引用(9)

图(9)  /  表(3)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  145
  • PDF下载量:  447
  • 被引次数: 19
出版历程
  • 收稿日期:  2021-05-04
  • 修回日期:  2021-05-09
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回