ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 133-140. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-16
Citation: CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 133-140. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-16

Landslide risk assessment in Nanping City based on artificial neural networks model

More Information
  • Received Date: April 14, 2021
  • Revised Date: June 19, 2021
  • Available Online: March 22, 2022
  • Landslide hazards continuous sequence the safety of people's lives and property and the sustainable development of regional society and economy, and landslide risk assessment can provide an effective theoretical basis for disaster mitigation and regional planning. A total of 1711 historical landslide hazard sites around Nanping City were obtained, and 11 impact factors, including elevation, slope, aspect, curvature, geological lithology, soil type, rainfall, water system, land use, road and railway etc. were selected. The covariance analysis of each factor was carried out using the Spearman correlation coefficient. Based on the data of 1711 landslides and 1711 non-landslides, an artificial neural network (ANN) model was used to evaluate the landslide risk in the study area, and the model was validated using a confusion matrix and receiver operating characteristic (ROC) curve. The results show that the confusion matrix accuracy was 84.91% and the area under the ROC curve (AUC) was 0.93, indicating that the model has high accuracy and prediction rate. The landslide risk index was classified into five classes by natural break method, and the results show that the highest risk areas in the study area locate in Yanping District and Pucheng County, followed by Shunchang County and Songxi County, and the rest of the areas were mostly low-risk areas and lower-risk areas. The results of the study can provide theoretical basis and scientific guidance for local regional planning and disaster mitigation.
  • [1]
    FAN X M, SCARINGI G, KORUP O, et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics,2019,57(2):421 − 503. DOI: 10.1029/2018RG000626
    [2]
    邓钟, 黄声享, 朱高龙. 基于近5年灾情数据的福建滑坡灾害时空特征分析[J]. 地质灾害与环境保护,2019,30(4):17 − 23. [DENG Zhong, HUANG Shengxiang, ZHU Gaolong. Temporal and spatial distribution characteristics analysis for Fujian landslide disasters based on disaster data in recent five years[J]. Journal of Geological Hazards and Environment Preservation,2019,30(4):17 − 23. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2019.04.003
    [3]
    王涛, 吴树仁, 石菊松, 等. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报,2015,23(1):93 − 104. [WANG Tao, WU Shuren, SHI Jusong, et al. Concepts and mechanical assessment method for seismic landslide hazard: a review[J]. Journal of Engineering Geology,2015,23(1):93 − 104. (in Chinese with English abstract)
    [4]
    TANG C, ZHU J, QI X. Landslide hazard assessment of the 2008 Wenchuan earthquake: A case study in Beichuan area[J]. Canadian Geotechnical Journal,2011,48(1):128 − 145. DOI: 10.1139/T10-059
    [5]
    刘丽娜, 许冲, 徐锡伟, 等. GIS支持下基于AHP方法的2013年芦山地震区滑坡危险性评价[J]. 灾害学,2014,29(4):183 − 191. [LIU Lina, XU Chong, XU Xiwei, et al. GIS-based landslide hazard evaluation using AHP method in the 2013 Lushan earthquake region[J]. Journal of Catastrophology,2014,29(4):183 − 191. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2014.04.034
    [6]
    VIOLANTE R A, BOZZANO G, ROVERE E I. The marine environment: hazards, resources and the application of geoethics principles[J]. Annals of Geophysics,2018,60:1 − 10. DOI: 10.4401/ag-7467
    [7]
    OLEN S, BOOKHAGEN B. Mapping damage-affected areas after natural hazard events using sentinel-1 coherence time series[J]. Remote Sensing,2018,10(8):1272. DOI: 10.3390/rs10081272
    [8]
    JAFARIAN Y, LASHGARI A, HADDAD A. Predictive model and probabilistic assessment of sliding displacement for regional scale seismic landslide hazard estimation in IranPredictive model and probabilistic assessment of sliding displacement[J]. Bulletin of the Seismological Society of America,2019,109:1581 − 1593.
    [9]
    王萌, 乔建平. 贡献权重模型在区域滑坡危险性评价中的应用[J]. 中国地质灾害与防治学报,2010,21(1):1 − 6. [WANG Meng, QIAO Jianping. Application of contributing weights model in regional landslides hazard assessment[J]. The Chinese Journal of Geological Hazard and Control,2010,21(1):1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2010.01.001
    [10]
    DEHNAVI A, AGHDAM I N, PRADHAN B, et al. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran[J]. CATENA,2015,135:122 − 148. DOI: 10.1016/j.catena.2015.07.020
    [11]
    BOURENANE H, GUETTOUCHE M S, BOUHADAD Y, et al. Landslide hazard mapping in the Constantine City, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods[J]. Arabian Journal of Geosciences,2016,9(2):1 − 24.
    [12]
    CHEN W, POURGHASEMI H R, KORNEJADY A, et al. Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques[J]. Geoderma,2017,305:314 − 327. DOI: 10.1016/j.geoderma.2017.06.020
    [13]
    LUO X G, LIN F K, ZHU S, et al. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors[J]. PLoS One,2019,14(4):e0215134. DOI: 10.1371/journal.pone.0215134
    [14]
    TIAN Y Y, XU C, HONG H Y, et al. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event[J]. Geomatics, Natural Hazards and Risk,2019,10(1):1 − 25. DOI: 10.1080/19475705.2018.1487471
    [15]
    黄国平, 柳侃, 叶龙珍. 南平市红星滑坡泥石流特征及成因[J]. 地质灾害与环境保护,2014,25(4):20 − 25. [HUANG Guoping, LIU Kan, YE Longzhen. Characteristics and genesis of the Hongxing landslide and debris-flow in Nanping[J]. Journal of Geological Hazards and Environment Preservation,2014,25(4):20 − 25. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2014.04.003
    [16]
    江彬, 黄国平, 柳侃. 南平蔡源滑坡泥石流成灾特点及灾后反思[J]. 地质灾害与环境保护,2015,26(4):36 − 39. [JIANG Bin, HUANG Guoping, LIU Kan. The characteristics and experience of landslide and debris flow disaster in Caiyuan Village, Nanping City[J]. Journal of Geological Hazards and Environment Preservation,2015,26(4):36 − 39. (in Chinese with English abstract)
    [17]
    沈佳, 董岩松, 简文彬, 等. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报,2020,28(6):1290 − 1299. [SHEN Jia, DONG Yansong, JIAN Wenbin, et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology,2020,28(6):1290 − 1299. (in Chinese with English abstract)
    [18]
    HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides,2014,11(2):167 − 194.
    [19]
    YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S, et al. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides,2016,13(5):839 − 856. DOI: 10.1007/s10346-015-0614-1
    [20]
    ZÊZERE J L, PEREIRA S, MELO R, et al. Mapping landslide susceptibility using data-driven methods[J]. Science of the Total Environment,2017,589:250 − 267. DOI: 10.1016/j.scitotenv.2017.02.188
    [21]
    SORBINO G, SICA C, CASCINI L. Susceptibility analysis of shallow landslides source areas using physically based models[J]. Natural Hazards,2010,53(2):313 − 332. DOI: 10.1007/s11069-009-9431-y
    [22]
    DEN EECKHAUT M V, MARRE A, POESEN J. Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France) [J]. Geomorphology, 2010, 115(1-2): 141-55.
    [23]
    REICHENBACH P, ROSSI M, MALAMUD B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews,2018,180:60 − 91. DOI: 10.1016/j.earscirev.2018.03.001
    [24]
    XIAO T, YIN K L, YAO T L, et al. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China[J]. Acta Geochimica,2019,38(5):654 − 669.
    [25]
    XIE W, LI X S, JIAN W B, et al. A novel hybrid method for landslide susceptibility mapping-based GeoDetector and machine learning cluster: A case of Xiaojin County, China[J]. ISPRS International Journal of Geo-Information,2021,10(2):1 − 19.
    [26]
    CANIANI D, PASCALE S, SDAO F, et al. Neural networks and landslide susceptibility: A case study of the urban area of Potenza[J]. Natural Hazards,2008,45(1):55 − 72. DOI: 10.1007/s11069-007-9169-3
    [27]
    CHAUHAN S, SHARMA M, ARORA M K, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):340 − 350. DOI: 10.1016/j.jag.2010.04.006
    [28]
    CHEN W, POURGHASEMI H R, ZHAO Zhou. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping[J]. Geocarto International,2017,32(4):367 − 385. DOI: 10.1080/10106049.2016.1140824
    [29]
    CHEN Y Y, LIN Y H, KUNG C C, et al. Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes[J]. Sensors (Basel, Switzerland),2019,19(9):2047 − 2073. DOI: 10.3390/s19092047
    [30]
    WERE K, BUI D T, DICK Ø B, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape[J]. Ecological Indicators,2015,52:394 − 403. DOI: 10.1016/j.ecolind.2014.12.028
  • Related Articles

    [1]Bofan YU, Huaixue XING, Liling ZHOU, Jiaxing YAN, Jinrui ZHANG, Meijun XU. Assessment of urban ground collapse susceptibility based on RF-BP neural network coupling model: A case study of typical areas in Hangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 160-170. DOI: 10.16031/j.cnki.issn.1003-8035.202311017
    [2]Guozhen CHEN, Junqi LIU, Jinghui CUI, Shupeng YU, Xiaohu ZHANG, Ninghui ZHU, Yuxin SONG. Application of different machine learning models in landslide susceptibility assessment in Badong County, Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 140-150. DOI: 10.16031/j.cnki.issn.1003-8035.202310011
    [3]Qing ZHANG, Yi HE, Xueye CHEN, Binghai GAO, Lifeng ZHANG, Zhanao ZHAO, Jiangang LU, Yalei ZHANG. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 146-162. DOI: 10.16031/j.cnki.issn.1003-8035.202304022
    [4]Kaixiang ZHANG, Daojun JIANG, Xiaoning LYU, Xi ZHANG. Current application of machine learning models in the analysis of remote sensing survey data for geological hazards[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.202302029
    [5]Ziyan GAO, Ruidong LI, Pengqing SHI, Xiaolong ZHOU, Juan ZHANG. Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 30-36. DOI: 10.16031/j.cnki.issn.1003-8035.202303062
    [6]Suhua ZHOU, Yuhang FU, Jingkang XING, Aiquan PENG, Mingyi JIANG. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006
    [7]Fuzhen LIU, Ling WANG, Dongsheng XIAO. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-12
    [8]Ranke FANG, Yanhui LIU, Zhiquan HUANG. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.2021.04-01
    [9]Yangchun LI, Qianyun LIU, Xiao LI, Tianhong GU, Nan ZHANG. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118-123. DOI: 10.16031/j.cnki.issn.1003-8035.2021.00-15
    [10]Jianping CHEN, Chunlei WANG, Xuedong WANG. Coal mine floor water inrush prediction based on CNN neural network[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 50-57. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.07
  • Cited by

    Periodical cited type(39)

    1. 赵永卿. 基于ISS特征点和改进的ICP点云配准方法. 北京测绘. 2025(02): 153-157 .
    2. 谭俊杰. 无人机在地质灾害隐患点快速识别与监测中的应用. 智能建筑与智慧城市. 2025(04): 60-62 .
    3. 高攀,陈晨,苏哲,王博,厉达垚. 探索激光雷达测量(LiDAR)技术识别地质灾害隐患. 安徽地质. 2025(02): 168-171 .
    4. 侯昕廷,门茂林,周颖. 无人机航测技术在地质灾害早期识别中的应用. 城市勘测. 2024(01): 95-99 .
    5. 刘俊雄. 机载LiDAR技术在福建高植被覆盖山区地质灾害研究中的应用. 福建地质. 2024(01): 65-72 .
    6. 曹虎. 高植被覆盖下铁路隧道口危岩落石风险评估. 铁道标准设计. 2024(05): 122-129 .
    7. 马晓雪,焦润成,曹颖,南赟,王晟宇,郭学飞,赵丹凝,闫驰,倪璇. 重大工程建设中地质灾害综合遥感监测技术方法应用——以北京2022冬奥会延庆赛区为例. 自然资源遥感. 2024(02): 248-256 .
    8. 熊小辉,白永健,铁永波,高延超,徐伟,龚凌枫,王家柱,田凯,李鹏岳. 基于“天–空–地–深”方法的山区城镇地质灾害隐患判识:以四川省喜德县重点乡镇为例. 沉积与特提斯地质. 2024(03): 560-571 .
    9. 成书楼,张鹏,黄波林,王勋,许凯凯,董星辰. 融合贴近摄影和LiDAR技术的危岩体三维模型构建及稳定性分析. 水文地质工程地质. 2024(05): 172-181 .
    10. 洪勃,唐亚明,冯卫,李政国,潘学树,冯凡,周永恒,尹春旺. 基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例. 西北地质. 2024(06): 218-233 .
    11. 赵财全,刘家明,杨润生,朱荣先,高勇,段浩锋. 轻便型无人机快速测绘技术在地质灾害应急抢险中的应用研究. 科技创新与应用. 2023(02): 177-180 .
    12. 吴利荣. 地质灾害应急抢险中轻便型无人机快速测绘技术的应用研究. 科学技术创新. 2023(05): 33-36 .
    13. 张涛,姚月,张云昌,李红光,于天宇,高杨. 无人机机载LIDAR在地质灾害数据采集中的应用研究——以金沙江白格堰塞湖应急处置旧址科学考察为例. 中国应急救援. 2023(02): 49-54 .
    14. 王斌,周立鹏,李琴. 顾及InSAR形变特征的斜坡灾害隐患早期识别遥感方法. 华南地震. 2023(01): 105-110 .
    15. 张贺,芦覃,陈萧瑶,郑尹君. 山区潜在危岩边坡地质灾害快速调查与稳定性评价. 测绘与空间地理信息. 2023(04): 26-28+33 .
    16. 郭琪璇,宋晓芳,杨礼朋. 倾斜摄影测量在地质灾害调查中的应用. 山西煤炭. 2023(01): 72-77 .
    17. 赵婷婷,高文娟,李志林,廖露,陈笑峰. 实景三维技术在“8·8”九寨沟地震地质灾害快速调查中的应用. 中国地质灾害与防治学报. 2023(03): 93-99 . 本站查看
    18. 高顺喜. 上海崩塌灾害的多传感器融合观测技术与普查识别. 上海国土资源. 2023(02): 119-125 .
    19. 刘文军,叶群,万芳琦. 基于综合遥感手段的地质灾害隐患早期识别. 江西测绘. 2023(02): 29-32 .
    20. 李振忠,王飞,朱文峰,何强,李明露,高学宗. 基于无人机载LiDAR和倾斜摄影的地质灾害隐患早期识别. 大众科技. 2023(07): 9-13 .
    21. 王斌,徐佳沅,唐力明,周立鹏. 小型斜坡隐患识别“空天地”图谱几何遥感方法. 测绘通报. 2023(08): 136-141 .
    22. 赵亚凯,邓青春. 反距离加权插值参数对细沟DEM精度的影响. 西华师范大学学报(自然科学版). 2023(05): 496-504 .
    23. 薛宇腾,黄新文,赵非. 铁路工程地质勘察智能化技术研究现状与发展趋势. 铁道勘察. 2023(05): 73-78 .
    24. 段方情. 安顺城区崩塌地质灾害发育特征分析及其防治建议. 贵州科学. 2023(05): 81-84 .
    25. 陈梦源,李慧娟,李喜,刘畅,潘峰,丁旭峰,余杰,张文广. 基于倾斜摄影技术的高位崩塌调查与数值模拟分析——以柴埠溪峡谷口崩塌为例. 资源环境与工程. 2023(05): 578-586 .
    26. 庞鑫,袁明,卢渊,杜文杰,万道春,李得,丁海锋,付晓东. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法. 地质科技通报. 2023(06): 21-30 .
    27. 胡晋茹,赖林枫,芦治源,张晓峰,李元,赵廷宁,魏广阔. 消费级无人机倾斜摄影测量监测弃土场的精度评估. 测绘通报. 2023(11): 36-41 .
    28. 李大猛,孙东,余辉,李松,张正鹏. 绿色矿山建设与矿山生态修复关联探析. 世界有色金属. 2023(22): 162-165 .
    29. 周小龙,贾强,石鹏卿,何斌,郭富赟,胡文博,李攀龙. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用. 中国地质灾害与防治学报. 2022(01): 107-116 . 本站查看
    30. 詹美斌. 低空无人机倾斜摄影三维模型在地质灾害监测中的应用. 测绘与空间地理信息. 2022(03): 221-224 .
    31. 孙诗友. 无人机倾斜摄影测量在农村房地一体测量中的应用探索. 四川建材. 2022(06): 50-51+56 .
    32. 张占忠. 复杂山区铁路空天地一体化综合测绘技术研究. 铁道勘察. 2022(04): 5-9+46 .
    33. 马健,白洁. 一种基于多视图的小型物件三维建模方法的研究. 办公自动化. 2022(17): 6-9 .
    34. 党杰,董吉,何松标,范宣梅. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用. 中国地质灾害与防治学报. 2022(04): 106-113 . 本站查看
    35. 郭富赟,周小龙,火飞飙,张毅. 舟曲断裂带滑坡灾害效应与防治对策研究. 中国地质灾害与防治学报. 2022(06): 80-89 . 本站查看
    36. 巨淑君,高志良,高强,彭涛,刘恒. 吉牛水电站库区地质灾害调查新技术应用. 四川水力发电. 2021(04): 63-67+71 .
    37. 李星宇,赫念学,魏英波,王文博,徐彪. 复杂环境倾斜摄影与实景三维建模技术应用. 测绘通报. 2021(S1): 20-24 .
    38. 熊开治,任志远,赵亚龙,杨忠平,张黎健. 基于无人机航测的丹霞地貌区危岩结构面识别与三维裂隙网络模型——以重庆四面山景区为例. 中国地质灾害与防治学报. 2021(05): 62-69 . 本站查看
    39. 杨普,赵远洋,李一鸣,吴宇峰,李蔚然,李振波. 基于多源信息融合的农业空地一体化研究综述. 农业机械学报. 2021(S1): 185-196 .

    Other cited types(11)

Catalog

    Article views (352) PDF downloads (362) Cited by(50)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return