Analysis on the accumulation deposits characteristics and formation mechanism of Kangyang landslide in the upper reaches of Yellow River
-
摘要: 滑坡堆积体特征及其成因机理是进一步研究滑坡防治及开发利用的基础与前提。位于青藏高原东北缘的黄河上游群科—尖扎盆地内的康杨滑坡属于典型的巨型古滑坡,其堆积体特征及形成机制在该地区具有典型性和代表性,具有较高的学术研究价值。结合工程地质钻孔资料,通过详细的野外调查、粒度分析等方法对康杨滑坡形态特征、形成年代、滑坡体粒度特征及其成因机理进行了研究,主要认识如下:(1)康杨滑坡为晚更新世晚期发生的泥岩滑坡,体积约为12.59×108 m3,为一典型巨型古滑坡,后壁高耸直立;(2)滑坡前缘曾滑移至黄河北岸,堆积体可能堵塞黄河,后被黄河从中部侵蚀切穿,目前在黄河北岸仍存留有古滑坡堆积体;(3)高原抬升和黄河下蚀等作用可能是滑坡发生的背景条件,降水入渗形成软弱滑带和黄河侧蚀作用可能是触发康杨滑坡的主要因素。Abstract: The development characteristics and formation mechanism of landslides are the basis and premise for further research on landslide prevention and utilization. Therefore, it is necessary to thoroughly study on the development characteristics and formation mechanism of landslides. The Kangyang landslide located at the Qunke-Jianzha Basin in the upper reaches of the Yellow River on the northeastern margin of the Qinghai-Tibet Plateau, it is a typical and super large scale ancient landslide. Its obvious development characteristics and formation mechanism are more representative in the region and has higher academic research value. Combining with the engineering geological drilling data, detailed field investigation and grain size analysis, the author studied the Kangyang landslide morphology characteristics, formation age, grain size of landslide deposit and its formation mechanism. The main conclusions are as follows: 1) Kangyang landslide is a mudstone landslide that occurred in the late Late Pleistocene, with a residual volume of 12.59×108 m3, and the back edge wall is high and upright; 2) Paleoclimate changes may be the key factor triggering the Kangyang landslide. The front edge of the landslide slipped to the north bank of the Yellow River, and the accumulation body may block the Yellow River, which was later cut through by the Yellow River erosion from the middle part. At present, there are still ancient landslide accumulations on the north bank of the Yellow River. 3) The uplift of the plateau and the erosion of the Yellow River may be the background conditions for the occurrence of Kangyang landslide, but the weak sliding zone formed heavy rainfall infiltration and the lateral erosion of the Yellow River may be the main factors triggering the Kangyang landslide.
-
0. 引言
位于黄河上游的群科—尖扎盆地,地处黄土高原与青藏高原的陡变带[1],由于长期受新构造运动及气候波动引起的河流侵蚀、切割等因素的影响,滑坡十分发育并以规模大、典型性强而著称,形成了滑坡高易发区,具有较大的研究价值。有研究者对群科—尖扎盆地内滑坡灾害进行了系统研究,取得了较好的成果[2-3]。多数研究者认为群科—尖扎盆地内滑坡多为泥岩滑坡,此类滑坡具有滑动势能高,残留体积大等特点[4-6],并研究了盆地内寺门村滑坡及锁子滑坡的发育特征及成因,针对滑坡堆积体的开发、利用以及之后形成的堰塞湖效应进行了探讨[7-8]。分析了盆地内夏藏滩巨型滑坡的发育期次、演化模式及形成机理[9]。但对盆地内同样为巨型滑坡的康杨滑坡研究较少,仅开展了部分基础性调查工作[10],更为详细的研究未见报道。另外,多数学者从工程地质方面着手研究滑坡,取得了丰富的成果[11-17],但大型的老滑坡及古滑坡的发育多与古气候变化及内动力地质作用有着较为密切的关系[18-21],前人对于古气候变化及内动力地质作用特别是新构造运动对滑坡的发育及发生所造成的影响研究较少,然而此二者是促使滑坡形成与发展的重要因素[22]。文章应用ESR测年、粒度分析,并结合工程地质钻孔数据及大量的野外调查工作,开展了康杨滑坡堆积体发育特征研究,并对滑坡成因机理进行了探讨分析,以期为群科—尖扎盆地地质灾害多发区防灾减灾提供借鉴与科学依据。
1. 康杨滑坡区域位置及概况
康杨滑坡位于青海省黄南藏族自治州北部的群科—尖扎盆地,研究区内地势东西两侧高,中部低,落差大,村庄广布(图1)。康杨滑坡整体距尖扎县较近,滑坡体中部距县城仅10.5 km。
康杨滑坡的滑坡堆积体主要位于黄河南岸,滑坡前缘少部分滑移至黄河北岸,河流相砾石层覆盖其上。现残存的滑坡堆积体轮廓特征明显,边界整体为圆弧状,西至都藏山及千藏山分水岭处,南部边界则至烂泥滩河滩沟,前缘坡脚处的格曲村及格曲河滩沟支沟构成康杨滑坡北部边界。尖扎县马克唐镇至康杨镇公路穿越滑坡坡脚,滑坡体后部坐落白日地洲村,现已搬迁见图2(a),其上可见残存的乡间道路及废弃民居。康杨滑坡为新近系泥岩滑坡,东西横跨约4.0 km,南北宽约3.4 km,面积约为1.5×107 m2。滑坡后壁高耸陡峭,见图2(b),高近百米,据滑坡后缘ZK13工程地质钻孔数据揭示,康杨滑坡后部残留体厚度可达110 m,中部三个钻孔ZK3、ZK4、ZK5揭示残留体厚度约为80~100 m,位于滑坡前缘的ZK6钻孔处残留体厚52 m,总残留体积约为12.59×108 m3。
据前人开展的滑坡ESR测年,康杨滑坡形成时间约为33.2±2.5 ka BP[1]。由于滑坡形成时间较早,滑体后部及前缘均已被后期改造。
2. 康杨滑坡堆积体变形特征
实地野外调查是滑坡研究的关键[23-26]。调查发现,康杨滑坡边界清晰,滑坡后缘多出现张裂隙,陡坎、冲沟及鼓丘多发育在滑坡体中部及前缘,两侧冲沟规模大,偶见封闭洼地(图3)。
沿图1中D1—D2剖面线绘制康杨滑坡横剖面图,滑坡体中部沉积物厚,两测较薄,向上隆起呈拱形(图4)。滑坡后壁实测坡度85°,极为陡峭,风化程度较高,稳定性较差,发生多处小规模崩塌,致使直立后壁下形成一个坡度较缓的斜面,主要以散落的泥岩、砂岩、黄土等为主。康杨古滑坡的滑坡体由6级平台构成,从前缘到后缘依次为1~6级,各平台上多见垄岗,以东西向展布居多。滑坡前缘为黄河II级阶地,其上可见磨圆度高、分选性好、岩性混杂的砾石。康杨镇坐落在此台面上,台面整体较为平坦,多种植有农作物。在滑坡体前缘第一级平台布设ZK6钻孔,由于长期受到冲刷及侵蚀,该平台后端形成一个高36 m出露良好的陡坎(图5),沉积物以砂砾石等为主,黄土层覆盖在其上,由此剖面上沉积物的分布可知滑坡体位于河流相砾石层之上。第二级平台上布设有ZK4,ZK5两个钻孔,此平台上宽下窄,ZK4处宽度为261 m,至ZK5钻孔处缩至105 m,平台末端宽度仅78 m,此级平台发育有约深2 m的冲沟,冲沟延伸较远,平台上未见明显植被,整体较为松散,上有两处凹陷,一处在ZK4钻孔处,另一处在ZK5钻孔附近。ZK3钻孔位于第三级平台之上,平台宽达322 m,坡度则更缓。第二和第三级两平台间发育有一冲沟,深度较大,可达30 m左右,延伸远,附近地表植被较为发育。第四和第五两级平台宽度较第三级平台小,但坡度几乎相同,中间被冲沟分割,冲沟深度不大。第六和第五级两平台有不深的沟壑相隔,第六级平台后部宽度大,曾坐落有白日地州,ZK13钻孔亦在此处,平台后部向上反翘,上有植被分布,平台前部宽度较后部小,坡度与第五级平台几乎相同。
3. 康杨滑坡滑体物质组成及粒度特征
3.1 滑坡体物质组成
该滑坡体岩性组成较复杂,由泥岩、砂岩、砂砾岩、亚砂土及滑坡后壁高台上崩落下的砂砾石、粉砂等物质混杂堆积组成,多呈碎块状。滑坡体后缘至前缘物质组成未见明显规律性,滑坡体上大小块体混杂,整体分选差,小的仅为几厘米,较为完整的大块泥岩长轴可达十余米,块体磨圆度低。
从钻孔揭露的滑体堆积物及冲沟观察来看,后缘一直到前缘呈大多数堆积体杂乱外,仍有部分块体完整性较好,有些泥岩块体达十几米,这些块体在中后部无方向无层次与其它堆积体混杂堆积,层理清楚可辩。整个滑坡体在滑坡体后部呈混杂堆积状态,在滑坡前缘多呈反翘状态(图5)。
该滑坡滑床后壁较陡,中前部一直很缓,根据野外调查,滑面切穿黄土在滑坡前缘沿基岩顶面剪出,滑体滑床为新近系砂泥岩,扰动后成碎裂状。灰白色块体状砂岩和紫红色泥岩呈近水平层理,遇水易泥化,稳定性较差。
3.2 滑坡体及其上覆黄土粒度特征
粒度测试是对沉积物各组分进行定量研究的重要方法,可以辅助开展沉积物多组分分布特征的研究,进而可以对沉积物形成时所蕴藏的动力机制条件的探索提供一定的依据[27-29]。滑坡堆积体上的物质亦为沉积物,由多个组分组成,各组分分布特征明显。5个粒度样品取自康杨滑坡前缘(表1、图6),取样过程遵循标准取样流程[30]。粒度样品在中国科学院新生代地质与环境重点实验室应用Mastersizer 3000激光粒度仪测试完成,整个过程遵循前人标准试验方法[31]。
表 1 康杨滑坡粒度样品信息Table 1. Information of grain size samples of Kangyang landslide样品编号 海拔/m 样品类型 KY01 2098 阶地上覆黄土 KY02 2116 滑坡堆积物 KY03 2097 滑坡堆积物 KY04 2098 滑坡堆积物 KY05 2097 滑坡堆积物 根据样品粒度测试结果并加以计算分析,绘制粒度频率曲线,可知黄土与滑坡体二者的频率曲线区别明显(图7),粒度曲线差异明显,这与前人所得结论一致[27]。进一步研究发现黄土的粒度曲线呈现双峰模式,优势组分为4~8 φ,滑坡体粒度样品曲线则多表现为3峰并存,优势组分多为4~10 φ,这得到了前人在临近区域所做研究的证实[8]。同时依据前人有关滑坡堆积物粒度组分的分析方法[27],发现康杨滑坡5个粒度样品均可分为4个组分,即<3.3 φ为水成悬浮组分,此组分粒度最大;3.3~12 φ为风成悬浮组分,其中3.3~6.5 φ为粗粒组分,6.5~10 φ为中粒组分,10~12 φ则为细粒组分。
4. 康杨滑坡成因机理浅析
导致滑坡发生的因素较为复杂。对青藏高原及黄河上游的研究认为,临近区域发生的地质灾害会对青藏高原的构造变形产生一定的响应。古气候变化研究认为,古滑坡发育及形成演化往往与全球性气候变化耦合程度较高[32]。
4.1 内动力地质作用
地貌可对内动力地质作用产生明显的响应,而新构造运动是内动力地质作用重要的表现形式[33-34]。多数学者认为共和运动致使黄河上游河段产生较为强烈的抬升,随着黄河的持续侵蚀,在黄河上游地区两岸形成高陡直立边坡。群科—尖扎盆地发育有尖扎北断裂带,整体距康杨滑坡较近,且研究区内小规模断裂多,在青藏高原发生频繁构造活动的情况下,会使得群科—尖扎盆地内活动断裂发生地貌差异抬升,为滑坡形成提供了高陡的地形条件,同时断裂活动可能会引发地震,形成大量裂隙及表生滑动构造,进一步促成滑坡的发生。
4.2 外动力地质作用
气候波动对滑坡形成的影响受到诸多学者的关注[35-39],在40~30 ka BP,青藏高原及邻近区域因岁差周期等因素的影响形成高温大降水事件[40],致使温度升高,冰雪消融,加之降水增多,加剧了黄河的切割与侵蚀,进一步促成了临空面的形成。另外,降雨量的增加导致入渗水量增多,滑坡体载荷增大,加剧滑坡发生的可能性。
4.3 斜坡临空面促滑作用
群科—尖扎盆地多发育高陡直立边坡。黄河不断侵蚀斜坡坡脚,随着时间的推移,高陡边坡因自身重力较大而向侵蚀岸倾斜,并开始产生滑移。前缘在历经长时间的流水侵蚀后,形成临空面,同时坡脚应力集中现象开始显现,汇集的雨水沿节理、裂隙、孔隙等入渗,致使饱和层形成,不仅使滑体整体重量陡增,而且加剧软弱结构面及软弱结构带等的软化程度,进而使应力集中区发生连通及贯穿,坡体发生大面积失稳,在重力作用下发生向下滑动,滑体滑移至黄河左岸,使黄河东移,出现滑坡前缘凹岸、凸岸并存,但因滑体堵塞黄河时间短,未因此形成大规模的堰塞湖。
综上,滑坡发生前,康杨滑坡所处的斜坡段为黄河侵蚀岸(凹岸),坡脚在河水不断侵蚀下,高耸的岩质斜坡在重力作用下向河谷方向变形,产生位移,前缘局部地段冲刷、侵蚀强烈,形成较大滑坡临空面;坡脚应力集中急剧增加;加之,降水在地表汇集,沿垂直节理面、风化裂隙面入渗,不仅增大了坡体重力,而且在基础结构面上形成饱和层,不断软化形成坡体内部的软弱带,并与坡体应力集中区贯通,坡体整体失稳。在重力作用下沿其滑动,并在坡脚处形成滑坡。因此,笔者认为断裂活动等内动力地质作用对于黄河上游地貌格局演化具有明显控制作用,但气候变化中的降水入渗形成软弱滑带和黄河侧蚀作用可能是触发黄河上游群科—尖扎盆地康杨滑坡形成的主要因素。
5. 结论
通过详细的野外调查、粒度测试及遥感解译等方法,初步分析了位于黄河上游群科—尖扎盆地内康杨滑坡的发育特征及成因机理,取得如下认识:
(1)康杨滑坡后壁高陡直立,具有滑动距离远、残存体积大等特点,滑坡堆积物粒度样品频率曲线及粒度参数均与黄土特征不同,滑坡体粒度多由4个组分组成。
(2)康杨滑坡发生于晚更新世,前缘滑体滑移至黄河北岸,在黄河北岸残留有古滑坡堆积体。
(3)黄河侧蚀作用和降水入渗形成软弱滑动带可能是诱发康杨滑坡发生的主要因素。
-
表 1 康杨滑坡粒度样品信息
Table 1 Information of grain size samples of Kangyang landslide
样品编号 海拔/m 样品类型 KY01 2098 阶地上覆黄土 KY02 2116 滑坡堆积物 KY03 2097 滑坡堆积物 KY04 2098 滑坡堆积物 KY05 2097 滑坡堆积物 -
[1] 殷志强, 魏刚, 祁小博, 等. 黄河上游寺沟峡-拉干峡段滑坡时空特征及对气候变化的响应研究[J]. 工程地质学报,2013,21(1):129 − 137. [YIN Zhiqiang, WEI Gang, QI Xiaobo, et al. Spatial and temporal characteristics of landslides and there response to climatic change from Sigou to Lagan gorges in upper reaches of Yellow River[J]. Journal of Engineering Geology,2013,21(1):129 − 137. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2013.01.017 [2] 殷志强, 赵无忌, 李小林, 等. 黄河上游戈龙布滑坡堵河事件及堰塞湖沉积物研究[J]. 地质学报,2013,87(增刊 1):311 − 313. [YIN Zhiqiang, ZHAO Wuji, LI Xiaolin, et al. Study on the event of river blocking and sediment of barrier lake in Gelongbu landslide in the upper Yellow River[J]. Acta Geologica Sinica,2013,87(Sup 1):311 − 313. (in Chinese) [3] YIN Z Q, QIN X G, YIN Y P, et al. Landslide developmental characteristics and response to climate change since the last glacial in the upper reaches of the Yellow River, NE Tibetan Plateau[J]. Acta Geologica Sinica - English Edition,2014,88(2):635 − 646. DOI: 10.1111/1755-6724.12219
[4] 魏刚, 殷志强, 马吉福, 等. 黄河上游阿什贡滑坡群发育期次及演化过程分析[J]. 水文地质工程地质,2016,43(6):133 − 140. [WEI Gang, YIN Zhiqiang, MA Jifu, et al. An analysis of forming stages and evolution process of the Ashigong landslide cluster in the upper reaches of the Yellow River[J]. Hydrogeology & Engineering Geology,2016,43(6):133 − 140. (in Chinese with English abstract) [5] 马小强, 李小林. 黄河上游茨哈峡-拉加峡段滑坡对水电站工程的影响[J]. 中国地质灾害与防治学报,2013,24(3):38 − 42. [MA Xiaoqiang, LI Xiaolin. Influence of landslide on Hydro-Power Engineering from Ciha gorge to Lajia gorge in upper reach of the Yellow River[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):38 − 42. (in Chinese with English abstract) [6] 魏占玺, 马文礼, 肖建兵, 等. 黄河上游松坝峡特大型滑坡堰塞湖及地貌效应研究[J]. 中国地质灾害与防治学报,2017,28(3):16 − 23. [WEI Zhanxi, MA Wenli, XIAO Jianbing, et al. Study on the large-scale landslide dammed lake of Songba gorge and its geomorphological effect of the upper reaches of Yellow River[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):16 − 23. (in Chinese with English abstract) [7] 殷志强, 魏刚, 秦小光, 等. 青藏高原东北缘黄河上游滑坡与堰塞湖研究进展[J]. 地学前缘,2021,28(2):46 − 57. [YIN Zhiqiang, WEI Gang, QIN Xiaoguang, et al. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau[J]. Earth Science Frontiers,2021,28(2):46 − 57. (in Chinese with English abstract) [8] 史立群, 魏刚, 殷志强, 等. 青海尖扎盆地寺门村滑坡发育特征及成因分析[J]. 中国地质灾害与防治学报,2020,31(5):15 − 21. [SHI Liqun, WEI Gang, YIN Zhiqiang, et al. Characteristics and formation of Simencun landslides in Jianzha basin of Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):15 − 21. (in Chinese with English abstract) [9] 殷志强, 许强, 赵无忌, 等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制[J]. 第四纪研究,2016,36(2):474 − 483. [YIN Zhiqiang, XU Qiang, ZHAO Wuji, et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River[J]. Quaternary Sciences,2016,36(2):474 − 483. (in Chinese with English abstract) DOI: 10.11928/j.issn.1001-7410.2016.02.22 [10] 王鹏. 基于逻辑回归与GIS的青海省尖扎县区域滑坡危险性评价[D]. 北京: 中国地质大学(北京), 2017 WANG Peng. Regional slide hazard assessment based on logistic analysis and GIS in Jianzha County Qinghai Province[D]. Beijing: China University of Geosciences, 2017. (in Chinese with English abstract)
[11] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001 [12] 杨龙伟, 魏云杰, 朱赛楠, 等. 新疆伊宁县克孜勒赛滑坡成灾机理和动力学特征[J]. 中国地质灾害与防治学报,2018,29(3):18 − 24. [YANG Longwei, WEI Yunjie, ZHU Sainan, et al. Formation mechanism of the Kezilesai Landslide in Yining Country, Xinjiang and its dynamic characteristics[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):18 − 24. (in Chinese with English abstract) [13] 杨铭, 陈洪凯, 陈斯祺. 滑坡格构-锚固工程结构计算及其应用—以重庆万州清泉路滑坡为例[J]. 中国地质灾害与防治学报,2016,27(2):61 − 65. [YANG Ming, CHEN Hongkai, CHEN Siqi. Application of framed anchor technique in controlling Qingquanlu landslide situateded in Wanzhou of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):61 − 65. (in Chinese with English abstract) [14] TANG Y M, SHU H P, XUE Q, et al. Field monitoring-based and theoretical analysis of Baota mountain landslide stability[J]. Advances in Civil Engineering,2021,2021:6699917.
[15] ZHOU Z, SHEN J H, LI Y, et al. Mechanism of colluvial landslide induction by rainfall and slope construction: A case study[J]. Journal of Mountain Science,2021,18(4):1013 − 1033. DOI: 10.1007/s11629-020-6048-9
[16] 王家柱, 葛华, 高延超, 等. 川南红层区黄子树滑坡形成过程与运动特征[J]. 中国地质灾害与防治学报,2020,31(2):9 − 17. [WANG Jiazhu, GE Hua, GAO Yanchao, et al. Mechanism and kinematic characteristics of Huangzishu Landslide in the red mudstone of southern Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):9 − 17. (in Chinese with English abstract) [17] 李玉瑞, 程晓伟, 赖天文, 等. 延安北连接线黄土滑坡变形机制地质分析与模型试验研究[J]. 中国地质灾害与防治学报,2019,30(2):35 − 42. [LI Yurui, CHENG Xiaowei, LAI Tianwen, et al. Geological analysis and model test study on the deformation mechanism of loess landslide in the north connection line of Yan'an[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):35 − 42. (in Chinese with English abstract) [18] FLAGEOLLET J C, MAQUAIRE O, MARTIN B, et al. Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France)[J]. Geomorphology,1999,30(1/2):65 − 78.
[19] 陈剑, 李晓, 杨志法. 三峡库区滑坡的时空分布特征与成因探讨[J]. 工程地质学报,2005,13(3):305 − 309. [CHEN Jian, LI Xiao, YANG Zhifa. On the distribution and mechanism of landslides in the Three Gorges reservoir area[J]. Journal of Engineering Geology,2005,13(3):305 − 309. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2005.03.004 [20] SOLDATI M, CORSINI A, PASUTO A. Landslides and climate change in the Italian Dolomites since the Late glacial[J]. CATENA,2004,55(2):141 − 161. DOI: 10.1016/S0341-8162(03)00113-9
[21] TRAUTH M H, BOOKHAGEN B, MARWAN N, et al. Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,194(1/2/3):109 − 121.
[22] 殷志强, 程国明, 胡贵寿, 等. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报,2010,18(1):41 − 51. [YIN Zhiqiang, CHENG Guoming, HU Guishou, et al. Preliminary study on characteristic and mechanism of super-large landslides in upper Yellow River since late-Pleistocene[J]. Journal of Engineering Geology,2010,18(1):41 − 51. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.01.006 [23] 殷跃平, 王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese with English abstract) [24] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究—以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract) DOI: 10.12029/gc20170501 [25] 谢洪波, 刘正疆, 文广超, 等. 四川金川-小金公路沿线滑坡、崩塌影响因素分析[J]. 中国地质灾害与防治学报,2021,32(1):10 − 17. [XIE Hongbo, LIU Zhengjiang, WEN Guangchao, et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):10 − 17. (in Chinese with English abstract) [26] 魏学利, 陈宝成, 赵龙, 等. 融雪诱发型黄土滑坡活动特征与应急响应模式—以新疆伊犁则克台滑坡为例[J]. 中国地质灾害与防治学报,2020,31(6):78 − 90. [WEI Xueli, CHEN Baocheng, ZHAO Long, et al. Kinematic characteristics and emergency response model of loess landslide drived by snowmelt: Take the Zeketai Landslide in Yili, Xinjiang as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):78 − 90. (in Chinese with English abstract) [27] 殷志强, 魏刚, 唐永光. 滑坡滑带(面)土及堆积物的粒度多组分分布特征研究[J]. 工程地质学报,2012,20(6):998 − 1006. [YIN Zhiqiang, WEI Gang, TANG Yongguang. Characteristics of multi-model grain size distribution of slip surface soils and deposits of landslides[J]. Journal of Engineering Geology,2012,20(6):998 − 1006. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.06.012 [28] 彭双麒, 许强, 郑光, 等. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术,2020,51(2):144 − 154. [PENG Shuangqi, XU Qiang, ZHENG Guang, et al. Recognition and analysis of deposit body grain of Baige Landslide-Debris Flow[J]. Water Resources and Hydropower Engineering,2020,51(2):144 − 154. (in Chinese with English abstract) [29] 张志东, 樊晓一, 姜元俊. 滑源区粒序分布及颗粒粒径对碎屑流冲击作用的影响研究[J]. 水文地质工程地质,2021,48(1):49 − 59. [ZHANG Zhidong, FAN Xiaoyi, JIANG Yuanjun. Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow[J]. Hydrogeology & Engineering Geology,2021,48(1):49 − 59. (in Chinese with English abstract) [30] 陈艳, 王延华, 叶斌, 等. 滇池流域宝象河水库沉积物粒度分布特征及其环境记录[J]. 水土保持研究,2021,28(3):7 − 12. [CHEN Yan, WANG Yanhua, YE Bin, et al. Characteristics of distribution of sediment particle size and its environmental records in baoxianghe reservoir of the Dianchi Basin[J]. Research of Soil and Water Conservation,2021,28(3):7 − 12. (in Chinese with English abstract) [31] 张俊辉, 周雄辉, 康秀丽, 等. 渭河宝鸡市区段沉积物的粒度特征分析[J]. 干旱区资源与环境,2019,33(10):131 − 137. [ZHANG Junhui, ZHOU Xionghui, KANG Xiuli, et al. Analysis on the grain-size characteristics of Weihe River sediments in Baoji section[J]. Journal of Arid Land Resources and Environment,2019,33(10):131 − 137. (in Chinese with English abstract) [32] 彭建兵, 马润勇, 卢全中, 等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences,2004,19(3):457 − 466. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-8166.2004.03.018 [33] 李亚林, 王成善, 王谋, 等. 藏北长江源地区河流地貌特征及其对新构造运动的响应[J]. 中国地质,2006,33(2):374 − 382. [LI Yalin, WANG Chengshan, WANG Mou, et al. Morphological features of river valleys in the source region of the Yangtze River, northern Tibet, and their response to neotectonic movement[J]. Geology in China,2006,33(2):374 − 382. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2006.02.016 [34] 刘高, 韩文峰, 聂德新. 青藏高原东北部新构造运动效应[J]. 中国地质灾害与防治学报,2001,12(1):30 − 34. [LIU Gao, HAN Wenfeng, NIE Dexin. The effect of neotectonic movements in northeastern Qinghai-Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control,2001,12(1):30 − 34. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2001.01.008 [35] ZHU D F, SONG K, MU J C, et al. Effect of climate change induced extreme precipitation on landslide activity in the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and the Environment,2021,80(2):781 − 794. DOI: 10.1007/s10064-020-01948-y
[36] 杨先全, 周苏华, 邢静康, 等. 肯尼亚滑坡灾害分布特征及敏感性区划[J]. 中国地质灾害与防治学报,2019,30(5):65 − 74. [YANG Xianquan, ZHOU Suhua, XING Jingkang, et al. Distribution patterns and susceptibility mapping of landslides in Kenya[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):65 − 74. (in Chinese with English abstract) [37] 朱晓霞, 张力, 杨树文. 降雨引发的兰州黄土滑坡时空规律分析和临界降雨量预测[J]. 中国地质灾害与防治学报,2019,30(4):24 − 31. [ZHU Xiaoxia, ZHANG Li, YANG Shuwen. Characteristics of rainfall-induced loess landslides and their threshold rainfall in Lanzhou[J]. The Chinese Journal of Geological Hazard and Control,2019,30(4):24 − 31. (in Chinese with English abstract) [38] 殷志强, 徐永强, 姜兴武. 云南镇雄赵家沟灾难性滑坡主控因素及减灾启示[J]. 中国地质灾害与防治学报,2015,26(2):36 − 42. [YIN Zhiqiang, XU Yongqiang, JIANG Xingwu. The key triggering factor and its mitigation implication of Zhaojiagou catastrophic landslide in Zhenxiong County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2015,26(2):36 − 42. (in Chinese with English abstract) [39] 魏刚, 殷志强, 史立群, 等. 青海化隆县地质灾害易发性区划[J]. 中国地质灾害与防治学报,2013,24(1):86 − 92. [WEI Gang, YIN Zhiqiang, SHI Liqun, et al. Zoning of geological disasters of Hualong County in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2013,24(1):86 − 92. (in Chinese with English abstract) [40] 施雅风, 贾玉连, 于革, 等. 40-30kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J]. 湖泊科学,2002,14(1):1 − 11. [SHI Yafeng, JIA Yulian, YU Ge, et al. Features, impacts and causes of the high temperature and large precipitation event in the Tibetan Plateau and its adjacent area during 40−30 kaBP[J]. Journal of Lake Science,2002,14(1):1 − 11. (in Chinese with English abstract) DOI: 10.3321/j.issn:1003-5427.2002.01.001 -
期刊类型引用(5)
1. 岳磊,刘昌义,丛晓明,唐彬元,付江涛,邢光延,雷浩川,赵吉美,吕伟涛,胡夏嵩. 基于InSAR技术的夏藏滩滑坡区地表变形监测与分析. 水文地质工程地质. 2024(03): 158-170 . 百度学术
2. 代小强,戴岩柯,彭向东,蒋涛,龚宇,李思,陈爱华,罗建华,李清山,王路. 大足区滑坡地质灾害空间分布特征及形成机理研究——以高坪镇天宝冒咕村场镇滑坡为例. 矿产勘查. 2024(S1): 410-419 . 百度学术
3. 刘向峰,于冰,郝国亮,王来贵. 降雨作用下多软弱夹层边坡滑移机理分析. 中国地质灾害与防治学报. 2024(06): 70-81 . 本站查看
4. 王溢禧,赵俊彦,朱兴华,于美冬,陈彩虹. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析. 中国地质灾害与防治学报. 2024(06): 1-14 . 本站查看
5. 陈云生,赵子鹏,李林. 某公路桥梁堆积体滑坡稳定性分析及处治方案研究. 西部交通科技. 2023(05): 126-128 . 百度学术
其他类型引用(3)