Risk assessment of geological disasters in Nanjing, Jiangsu Province
-
摘要: 地质灾害风险评价是地质灾害风险管控的支撑与依据,对于科学防治地质灾害具有重要意义。以江苏南京为研究区,选取历史灾害点密度等影响因子开展易发性评价,以降雨量作为诱发因素开展危险性评价,结合承灾体易损性,分析划定地质灾害高、中、低三类风险区。结果表明:高风险区主要集中在沿江的老山、幕府山、紫金山、栖霞山以及青龙山等部分人员聚居的山前坡麓一带,面积51.3 km2,占比0.8%;中风险区主要集中在低山丘陵中人员较集中的区域,面积371.9 km2,占比5.6%;低风险区分布较广,位于其余低山丘陵岗地,面积1740.1 km2,占比26.4%。研究成果可有效支撑当地地质灾害防灾减灾以及国土空间规划应用。Abstract: Geological disaster risk assessment serves as a crucial foundation for the risk management and control of such risks, playing a significant role in the scientific prevention and control of geological disasters. This study focuses on Nanjing, Jiangsu Province, and employs historical disaster point density and other influencing factors to evaluate the susceptibility of geological disasters. Rainfall is utilized as the triggering factor for conducting probability assessments. By considering the comprehensive vulnerability of the affected areas, the study analyzes and defines the high, medium, and low-risk zones for geological disasters. The findings reveal that high-risk zone primarily concentrates on populated piedmont slopes, including Laoshan, Mufu Mountain, Zijin Mountain, Qixia Mountain, and Qinglong Mountain, covering an area of 51.3 km2, accounting for 0.8% of the total area. Medium-risk zone is mainly located in areas with relatively concentrated populations in low mountains and hills, covering an area of 371.9 km2, accounting for 5.6% of the total area. Low-risk zone is more widely distributed, occupying the remaining low mountains and hills, covering an area of 1740.1 km2, accounting for 26.4% of the total area. The research results can effectively support disaster prevention, mitigation efforts related to geological disasters, and contribute to land space planning.
-
Keywords:
- geological hazard /
- susceptibility /
- probability /
- vulnerability /
- risk assessment /
- Nanjing
-
-
表 1 地质灾害风险等级矩阵分析
Table 1 Analysis of geological hazard risk level matrix
风险性 危险性 极高 高 中 低 易
损
性极高 极高 极高 高 中 高 极高 高 中 中 中 高 高 中 低 低 高 中 低 低 表 2 评价因子信息量
Table 2 Information value of evaluation factors
评价因子 子类区间 信息量值 灾害点密度/(个·km−2) 0 −5.86 (0,2] 2.51 (2,4] 3.10 >4 4.12 坡度/(°) [0,10) −0.97 [10,25) 1.97 [25,40) 3.31 [40,50) 4.87 [50,90] 5.32 地形起伏度/m <20 −2.16 [20,40) 2.86 [40,90) 3.47 [90,120) 5.24 [120,140] 6.85 >140 7.13 工程地质岩组 老黏性土 −1.43 一般黏性土 −3.71 岩浆岩类坚硬岩 1.33 碎屑岩类软~极软岩 2.64 碳酸盐岩类坚硬岩 3.10 碳酸盐岩类较坚硬岩 2.40 碎屑岩类较坚硬岩 2.39 碎屑岩类坚硬岩 1.08 距断层距离/m <20 2.50 [20,200) 2.48 [200,500) 1.78 [500,1000] 0.90 >1000 −0.56 距道路距离/m <100 −0.19 [100,200] 0.06 (200,300] 0.53 (300,400] 0.65 (400,500] 0.59 >500 −2.19 表 3 地质灾害易发性分区评价判断矩阵
Table 3 Judgment matrix for assessing susceptibility zonation of geological hazards
地质灾害易发性
分区评价地质环境条件 诱发因素 地质灾害现状 权重 地质环境条件 1 3 3 0.5936 诱发因素 1/3 1 2 0.2493 地质灾害现状 1/3 1/2 1 0.1571 判断矩阵一致性比例:0.0516;对总目标的权重:1.0000;
最大特征根:3.0536表 4 地质环境条件判断矩阵
Table 4 Judgment matrix for geological environmental conditions
地质环境条件 坡度 工程地质岩组 地形起伏度 距断层距离 权重 坡度 1 1 1 1/2 0.2071 工程地质岩组 1 1 1 2 0.2929 地形起伏度 1 1 1 2 0.2929 距断层距离 2 1/2 1/2 1 0.2071 判断矩阵一致性比例:0.0923;对总目标的权重:0.5936;
最大特征根:4.2463表 5 层次分析法计算各因子权重
Table 5 Calculation of factor weights using analytic hierarchy process (AHP)
影响因子 权重 历史灾害点密度 0.17 坡度 0.12 地形起伏度 0.17 工程地质岩组 0.17 距断层距离 0.12 距道路距离 0.25 表 6 研究区不同重现期降雨量
Table 6 Precipitation distribution in different recurrence period in the study area
年均及不同重现期 降雨量/mm 年最大日降雨量均值 101 P=10% 157.92 P=5% 182.22 P=2% 212.84 P=1% 235.22 -
[1] 马晓峰,朱浩濛,张义顺,等. 省级地质灾害风险评价技术方法研究—以浙江省为例[J]. 浙江国土资源,2021(1):57 − 65. [MA Xiaofeng,ZHU Haomeng,ZHANG Yishun,et al. Study on the provincial risk assessment of geological disasters:A case of Zhejiang Province[J]. Zhejiang Land & Resources,2021(1):57 − 65. (in Chinese with English abstract) MA Xiaofeng, ZHU Haomeng, ZHANG Yishun, et al. Study on the provincial risk assessment of geological disasters: a case of Zhejiang Province[J]. Zhejiang Land & Resources, 2021(1): 57-65. (in Chinese with English abstract)
[2] COTECCHIA V,MELIDORO G. Some principal geological aspects of the landslides of southern Italy[J]. Bulletin of the International Association of Engineering Geology - Bulletin De L’Association Internationale De Géologie De L’Ingénieur,1974,9(1):23 − 32.
[3] MEJÍA-NAVARRO M, WOHL E E, OAKS S D. Geological hazards, vulnerability, and risk assessment using GIS: Model for Glenwood Springs, Colorado[M]//Geomorphology and Natural Hazards. Amsterdam: Elsevier, 1994: 331 − 354.
[4] REMONDO J,BONACHEA J,CENDRERO A. A statistical approach to landslide risk modelling at basin scale:From landslide susceptibility to quantitative risk assessment[J]. Landslides,2005,2(4):321 − 328. DOI: 10.1007/s10346-005-0016-x
[5] 吴树仁,石菊松,张春山,等. 地质灾害风险评估技术指南初论[J]. 地质通报,2009,28(8):995 − 1005. [WU Shuren,SHI Jusong,ZHANG Chunshan,et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China,2009,28(8):995 − 1005. (in Chinese) WU Shuren, SHI Jusong, ZHANG Chunshan, et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 2009, 28(8)995-1005(in Chinese)
[6] 唐亚明,张茂省,李政国,等. 国内外地质灾害风险管理对比及评述[J]. 西北地质,2015,48(2):238 − 246. [TANG Yaming,ZHANG Maosheng,LI Zhengguo,et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015,48(2):238 − 246. (in Chinese with English abstract) TANG Yaming, (MAO)(SHENG Z, Xing), et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology, 2015, 48(2): 238-246. (in Chinese with English abstract)
[7] 王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价—以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797 − 808. [WANG Jiajia,YIN Kunlong,XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou District,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797 − 808. (in Chinese with English abstract) WANG Jiajia, YIN Kunlong, XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808. (in Chinese with English abstract)
[8] 施成艳,鹿献章,刘中刚. 基于GIS的安徽黄山市徽州区地质灾害易发性区划[J]. 中国地质灾害与防治学报,2016,27(1):136 − 140. [SHI Chengyan,LU Xianzhang,LIU Zhonggang. GIS-based zoning of geological hazard’s susceptibility in Huizhou District of Huangshan City of Anhui Province[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):136 − 140. (in Chinese with English abstract) SHI Chengyan, LU Xianzhang, LIU Zhonggang. GIS-based zoning of geological hazard’s susceptibility in Huizhou district of Huangshan city of Anhui Province[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1)136-140(in Chinese with English abstract)
[9] 李春燕,孟晖,张若琳,等. 中国县域单元地质灾害风险评估[J]. 水文地质工程地质,2017,44(2):160 − 166. [LI Chunyan,MENG Hui,ZHANG Ruolin,et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology and Engineering Geology,2017,44(2):160 − 166. (in Chinese with English abstract) LI Chunyan, MENG Hui, ZHANG Ruolin, et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology and Engineering Geology, 2017, 44(2)160-166(in Chinese with English abstract)
[10] 理继红, 李伟. 南京市2021年度重要地质灾害隐患点核查简报[R]. 南京: 江苏省地质调查研究院, 2021 LI Jihong, LI Wei. Nanjing 2021 major geological disaster hidden points verification briefing[R]. Nanjing: Geological Survey of Jiangsu Province, 2021. (in Chinese)
[11] 刘宝生,宋京雷,郝社峰,等. 江苏宁镇地区典型下蜀土滑坡机理分析及应急处理措施[J]. 中国地质灾害与防治学报,2019,30(3):31 − 36. [LIU Baosheng,SONG Jinglei,HAO Shefeng,et al. Analysis and emergent control measures of the typical Xiashu loess landslides in Nanjing-Zhenjiang area,Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):31 − 36. (in Chinese with English abstract) LIU Baosheng, SONG Jinglei, HAO Shefeng, et al. Analysis and emergent control measures of the typical Xiashu loess landslides in Nanjing-Zhenjiang area, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3)31-36(in Chinese with English abstract)
[12] 张敏,周灵,谭超,等. 复杂地层方形抗滑桩旋挖成孔工艺及工程应用[J]. 中国地质灾害与防治学报,2023,34(1):85 − 93. [ZHANG Min,ZHOU Ling,TAN Chao,et al. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):85 − 93. (in Chinese with English abstract) [ZHANG Min, ZHOU Ling, TAN Chao, et al. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 85-93.(in Chinese with English abstract)
[13] 杨洋,苏晶文,李云峰,等. 河谷平原跨区域工程地质层序厘定与平面分区方法—以安徽沿江地区为例[J]. 地质通报,2022,41(11):2019 − 2025. [YANG Yang,SU Jingwen,LI Yunfeng,et al. Stratigraphic ordering and regionalization of engineering geology in large area of valley plain:A case study along the Yangtze River in Anhui Province[J]. Geological Bulletin of China,2022,41(11):2019 − 2025. (in Chinese with English abstract) [YANG Yang, SU Jingwen, LI Yunfeng, et al. Stratigraphic ordering and regionalization of engineering geology in large area of valley plain: a case study along the Yangtze River in Anhui Province[J]. Geological Bulletin of China, 2022, 41(11): 2019-2025.(in Chinese with English abstract)
[14] 周彤, 商广明, 翟亚峰. 路基砾类填料土动力特性影响因素试验分析[J]. 吉林大学学报(地球科学版),2021,51(5):1482 − 1489. [ZHOU Tong, SHANG Guangming, ZHAI Yafeng. Experimental analysis on influencing factors of dynamic characteristics of subgrade gravel packing soil[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1482 − 1489. (in Chinese with English abstract) [ZHOU Tong, SHANG Guangming, ZHAI Yafeng. Experimental analysis on influencing factors of dynamic characteristics of subgrade gravel packing soil[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1482-1489.(in Chinese with English abstract)
[15] 中国地质环境监测院. 地质灾害风险调查评价技术要求(1∶50000)[M]. 北京: 中国地质环境监测院, 2020 China Geological Environmental Monitoring Institute. The 1∶50000 Technical Requirements for Geological Hazard Risk Investigation and Evaluation[M]. Beijing: China Geological Environmental Monitoring Institute, 2010. (in Chinese)
[16] 杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract) [DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111.(in Chinese with English abstract)
[17] 庞栋栋,刘刚,何敬,等. 基于层次分析法的甘肃省地质灾害风险评估分析[J]. 国土资源信息化,2021(6):41 − 47. [PANG Dongdong,LIU Gang,HE Jing,et al. Analysis of geological hazard risk assessment in Gansu Province based on analytic hierarchy process[J]. Land and Resources Informatization,2021(6):41 − 47. (in Chinese) PANG Dongdong, LIU Gang, HE Jing, et al. Analysis of geological hazard risk assessment in Gansu Province based on analytic hierarchy process[J]. Land and Resources Informatization, 2021(6): 41-47. (in Chinese)
[18] 郑师谊,张绪教,杨艳,等. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报,2012,31(增刊 1):356 − 365. [ZHENG Shiyi,ZHANG Xujiao,YANG Yan,et al. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang Basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China,2012,31(Sup 1):356 − 365. (in Chinese with English abstract) [ZHENG Shiyi, ZHANG Xujiao, YANG Yan, et al. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang Basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(Sup 1): 356-365.(in Chinese with English abstract)
[19] 闫佰忠, 孙剑, 王昕洲, 等. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版),2021,51(4):1172 − 1181. [YAN Baizhong, SUN Jian, WANG Xinzhou, et al. Suitability zoning of groundwater source heat pump in Shijiazhuang based on GIS-FAHP[J]. Journal of Jilin University (Earth Science Edition),2021,51(4):1172 − 1181. (in Chinese with English abstract) [YAN Baizhong, SUN Jian, WANG Xinzhou, et al. Suitability zoning of groundwater source heat pump in Shijiazhuang based on GIS-FAHP[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4): 1172-1181.(in Chinese with English abstract)
[20] 李军,周成虎. 基于栅格GIS滑坡风险评价方法中格网大小选取分析[J]. 遥感学报,2003(2):86 − 92,161. [LI Jun,ZHOU Chenghu. Appropriate grid size for terrain based landslide risk assessment in lantau island,hong kong[J]. Journal of Remote Sensing,2003(2):86 − 92,161. (in Chinese with English abstract) LI Jun, ZHOU Chenghu. Appropriate grid size for terrain based landslide risk assessment in lantau island, hong kong[J]. Journal of Remote Sensing, 2003(2): 86-92, 161. (in Chinese with English abstract)])
[21] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract) TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)
-
期刊类型引用(52)
1. 刘传正,米文忠,黄帅. 论灾害事故预防应对的调查评估问题. 灾害学. 2025(01): 1-7+85 . 百度学术
2. 曹禄来,瞿帅,万红军,余鹏琪,陈舒阳. 岗丘谷地弃土场倒葫芦形滑坡原因分析及处治措施. 路基工程. 2025(01): 213-218 . 百度学术
3. 张新,王建文,方舒,李敏. 基于随机场理论的多组分弃渣场可靠度研究. 山西建筑. 2025(07): 6-11 . 百度学术
4. 邓锡保,宋欣,马蕾梦醒,刘建友,张振波,陈亚东. 隧道弃渣场格宾生态挡墙碳排放分析及减碳技术. 铁道标准设计. 2024(06): 114-120 . 百度学术
5. 张清,何毅,陈学业,高秉海,张立峰,赵占骜,路建刚,张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价. 中国地质灾害与防治学报. 2024(04): 146-162 . 本站查看
6. 钟兴荣. 低势能滑坡束口聚能启程剧动机制研究——以深圳光明新区红坳建筑弃渣场滑坡为例. 岩石力学与工程学报. 2024(10): 2485-2496 . 百度学术
7. 李蔚霖. 贵州山区软基型弃渣场失稳机理探究. 交通科技. 2024(05): 62-65 . 百度学术
8. 刘传正,王建新. 崩塌滑坡泥石流灾害链分类研究. 工程地质学报. 2024(05): 1573-1596 . 百度学术
9. 聂峰,史超. 西南地区生产建设项目弃渣场水土保持现状. 长江技术经济. 2024(05): 31-37 . 百度学术
10. 夏清,窦志荣,尹小涛. 山区公路典型弃渣边坡灾变机制和综合安全控制技术. 施工技术(中英文). 2023(04): 29-33+38 . 百度学术
11. 王晓伟,朱兴旺,李卓. 矿山排土场边坡稳定性影响因素分析. 西部探矿工程. 2023(06): 11-14 . 百度学术
12. 许宁,陈铭,蔺威威,边涛,杜旭东,简东明. 泥岩地层盾构渣土免烧砖制备技术研究. 新型建筑材料. 2023(06): 80-82+94 . 百度学术
13. 沈剑羽,肖建庄,高琦,王浩通. 工程弃土复配及再生砖性能试验. 应用基础与工程科学学报. 2023(04): 990-1005 . 百度学术
14. 廖江林,黄家华. 压力注浆钢管桩在运营高速公路膨胀土路堤滑坡处治中的应用. 西部交通科技. 2022(10): 80-83 . 百度学术
15. 高琦,肖建庄,沈剑羽. 园林垃圾对工程弃土烧结砖性能的影响. 建筑材料学报. 2022(11): 1195-1202 . 百度学术
16. 李沁书,温家华,柴建峰,周喜军,闫宾,凌超. 抽水蓄能电站弃渣场勘察设计中若干问题的探讨. 水电与抽水蓄能. 2021(02): 90-94 . 百度学术
17. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(06): 153-155 . 百度学术
18. 洪振宇,何玉琼,李明,孙荣,朱莎莎. 降雨-地震耦合作用下某大型弃渣场稳定性分析. 矿业研究与开发. 2021(06): 43-47 . 百度学术
19. 王树英,占永杰,杨秀竹,付循伟,令凡琳. 淤泥质粉质黏土地层盾构渣土免烧空心砖固化机理与质量评价. 北京工业大学学报. 2021(07): 710-718 . 百度学术
20. 徐龙旺. 沿河膨胀填(弃)土滑坡群成因机制分析及处治研究. 西部交通科技. 2021(05): 24-27 . 百度学术
21. 刘志明. 弃渣场扩容条件下渣体边坡稳定性影响因素研究. 铁道建筑技术. 2021(08): 24-27+55 . 百度学术
22. 薛青松. 自密水泥土在基坑肥槽回填工程的现场试验研究. 江西建材. 2021(12): 28-30 . 百度学术
23. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(12): 153-155 . 百度学术
24. 肖建宇,谢忠勇,张著伦. 挡墙基底换填对弃土场边坡稳定性影响分析. 地质灾害与环境保护. 2020(01): 81-86 . 百度学术
25. 姚天雨,赵建平. 基于STAMP模型的深圳“12·20”滑坡事故致因分析. 系统科学学报. 2020(02): 73-78+89 . 百度学术
26. 郭小雨,陈枝东,裴立宅,李家茂,樊传刚. 改性矿渣水泥-渣土免烧砖的制备与性能表征. 新型建筑材料. 2020(05): 75-79 . 百度学术
27. 彭庆华,朱绍奇,张胜勇. 滑坡削坡卸载综合整治技术研究. 四川建筑. 2020(02): 118-119+122 . 百度学术
28. 邱海军,马舒悦,崔一飞,杨冬冬,裴艳茜,刘子敬. 重新认识滑坡作用. 西北大学学报(自然科学版). 2020(03): 377-385 . 百度学术
29. 林文华,叶诚耿,王浩. 考虑堆填界面软化及地下水位波动的大型弃渣场边坡稳定性分析. 铁道建筑. 2020(05): 84-88 . 百度学术
30. 王良民,郭向前,奚春华,李勇,程起敏. 实景三维地质灾害管理信息平台的设计与实现. 地理空间信息. 2020(08): 7-9+30+6 . 百度学术
31. 王盈,曾江波,姚文敏,李长冬. 基于可靠度理论的阻滑键加固渣土边坡多目标优化设计方法. 中国地质灾害与防治学报. 2020(05): 88-97 . 本站查看
32. 陈柯霖,卿伟宸,朱勇. 浅论环保新形势下艰险山区弃渣场系统设计. 高速铁路技术. 2020(05): 87-91 . 百度学术
33. 谢亦红,尹祖超,李亮,蔡鹏. 砂土静动力液化特性的数值模拟. 公路交通科技. 2020(12): 33-39 . 百度学术
34. 柴建峰,周喜军,江献玉,刘殿海,王震洲,凌超,闫宾,李沁书. 固体废弃物堆场深层缓倾角推移式破坏实例分析. 水电与抽水蓄能. 2020(06): 73-77+85 . 百度学术
35. 高杨,卫童瑶,李滨,贺凯,刘铮,王学良. 深圳“12.20”渣土场远程流化滑坡动力过程分析. 水文地质工程地质. 2019(01): 129-138+147 . 百度学术
36. 张睿骁,樊晓一,姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟. 水文地质工程地质. 2019(01): 148-155 . 百度学术
37. 王韬,叶咸,吴晓南. 浅议西南山区高速公路弃渣场工程. 公路交通科技(应用技术版). 2019(01): 110-114 . 百度学术
38. 王昱,闫宾,曹畅,柴建峰. 弃渣体潜在失稳滑动面探讨. 水电与抽水蓄能. 2019(04): 106-112 . 百度学术
39. 沈明祥,罗红明,刘志鹏,穆日盛,彭坤杰. 贵州省六盘水至威宁高速公路弃土场稳定性评估. 中国岩溶. 2019(04): 559-564 . 百度学术
40. 曾江波,杨龙,姚文敏,肖林超,鲁健. 基于非线性规划的渣土边坡坡形优化. 中国地质灾害与防治学报. 2019(06): 105-112 . 本站查看
41. 余东亮,王庆,王爱玲,吴东容,吴森. 西南山区管道某典型滑坡变形演化研究. 油气田地面工程. 2019(12): 65-69 . 百度学术
42. 李明阳,柴建峰. 浅析弃渣体设计参数. 水电与抽水蓄能. 2018(03): 103-105 . 百度学术
43. 龚鹏,张洪岩. 深圳市地质灾害详细调查工作思路与建议. 中国矿业. 2018(09): 36-40 . 百度学术
44. 陈鹏飞,姜文杰,魏益平,陈阳. 水位变化与降雨耦合条件下四川某渣场边坡稳定性研究. 山西建筑. 2018(35): 73-75 . 百度学术
45. 刘传正. 论崩塌滑坡—碎屑流高速远程问题. 地质论评. 2017(06): 1563-1575 . 百度学术
46. 刘传正. 论地质灾害风险识别问题. 水文地质工程地质. 2017(04): 1-7 . 百度学术
47. 张一希,许强,彭大雷,赵宽耀,郭晨. 深圳“12·20”滑坡土体渗透性模拟试验研究. 水文地质工程地质. 2017(05): 131-136+149 . 百度学术
48. 赖国泉,任庆钊,张俊德. 甘肃兰州某黄土建筑高边坡失稳原因及补强治理方案. 中国地质灾害与防治学报. 2017(01): 36-42 . 本站查看
49. 胡建华,黄超然,习智琴,杨春. 基于系统思考的深圳“12·20”滑坡事故分析及应对措施. 灾害学. 2017(01): 142-148 . 百度学术
50. 彭璐. 花岗岩地区滑坡特征及防治对策——以湖南省平江县花岗岩滑坡为例. 国土资源导刊. 2016(04): 20-24 . 百度学术
51. 柴建峰,王珏. 抽蓄工程弃渣场稳定性计算现状及问题分析. 山西建筑. 2016(27): 46-47 . 百度学术
52. 刘传正. 论地质灾害防治文化培育问题. 中国地质灾害与防治学报. 2016(03): 1-6 . 本站查看
其他类型引用(25)