Analysis on deformation mechanism of the lingwan village landslide in Shaanxi Province section of the West-East Gas Pipeline Project
-
摘要: 以西气东输管道余家坪镇岭湾村一处正在变形的黄土滑坡为研究对象,基于现场勘察、InSAR、GNSS监测和深部位移监测等,分析滑坡2017年~2022年的变形特征及滑坡成因机制。研究表明:滑坡地下水位已达坡脚,滑坡前缘形成多处“土溜”,滑坡地表垂直潜蚀裂缝发育,后缘可见贯通的裂缝,滑坡内管道周边裂缝发育;InSAR数据显示滑坡一直缓慢变形,年变形量在2.0~4.0 cm之间; GNSS变形及裂缝变形显示,2020年8月至今地表变形速率增大,变形明显,变形量在4~10 cm;深部变形监测数据变化量在0.05~1.36 mm,变化很小;降雨及土体含水率数据分析表明滑坡在暴雨后发生位移变形。综合分析监测数据表明,岭湾村滑坡属于降雨诱发的浅层滑坡;区域内的自然强降雨、人类工程经济活动作为滑坡的诱发因素,对滑坡的发生及发展作用明显。结合管道应变监测数据,目前西气东输管道遭受滑坡灾害的风险可控。Abstract: Based on field investigation, InSAR, GNSS monitoring, and deep displacement monitoring, a deformed loess landslide in Lingwan Village, Yujiaping Town, West-East Gas Pipeline Project was analyzed to understand its deformation characteristics and landslide formation mechanism from 2017 to 2022. The analysis shows that the groundwater level of the landslide has reached the toe of the slope, and numerous soil slips have been formed at the front edge of the landslide. The surface of the landslide exhibits vertical subsurface erosion cracks, while the penetrating cracks can be seen at the trailing edge. InSAR data shows that the landslide has been slowly deformed, with an annual deformation rate between 2.0 ~ 4.0 cm. GNSS deformation and crack deformation show that since August 2020, the surface deformation rate has increased significantly, with a deformation rate between 4.0 ~ 10.0 cm. The variation of deep deformation monitoring data is minimal, between 0.05 to 1.36mm. Analysis of rainfall and soil moisture data shows that the landslide has displacement deformation after rainstorm. The comprehensive analysis of monitoring data reveals that the landslide in Lingwan Village is a shallow landslide induced by rainfall. Natural heavy rainfall and human engineering economic activities in the region are the primary inducing factors for the occurrence and development of landslide. Combined with pipeline strain monitoring data, the risk of landslide disasters in Shaanxi Province section of West-East Gas Pipeline Project is controllable.
-
表 1 子长市岭湾村滑坡监测点布置情况
Table 1. Summary of Landslide Monitoring Points in Lingwan Village, Zichang City
序号 输气管道 监测点位置 监测要素 安装时间 1 西气东输管道 子长市余家坪镇岭湾村 雨量(1个)、裂缝(2个)、孔隙水压力(3个)、位移(3个)、
深部位移(3个)、含水率(3个)、应变计(3个截面)2019年12月 表 2 主要监测设备参数
Table 2. Main Monitoring Equipment Parameters
序号 监测要素 监测设备 参数指标 1 地表位移监测 一体化GNSS形变自动监测站 一体化GNSS形变自动检测站全星座支持;精度平面:±(2.5 mm+0.5*10-6D),高程:±(5 mm+0.5*10-6D) 2 深部位移监测 一体化深部测斜监测站 量程:±10 °C;测量精度:±0.1%FS;长期稳定性:±0.25%FS/年;分辨率:±10弧秒(±0.05 mm/m)。 3 地表裂缝监测 一体化表面裂缝自动监测站 测量范围:0~5000 mm;测量方向:双向;测量精度:±0.1%mmFS;拉线材质:铟钢丝。 4 地下水位监测 测压管及透气型渗压计 量程:35 m;精度等级:±0.05~±0.2%FS;非线性度:±0.1~±0.2%FS; 表 3 岭湾村滑坡区域时序地表形变量分析(2017.3—2020.4)
Table 3. Time-series surface deformation analysis of Lingwan Village landslide (2017.3—2020.4)
时间 2017年 2018年 2019年 2020年 3—6月 7—12月 1—6月 7—12月 1—6月 7—12月 1—4月 累计形变量(mm) -6.81mm -4.31mm -6.64mm -8.57mm -4.87mm -4.41mm -0.29mm 表 4 地表位移监测数据分析表(mm)
Table 4. Summary table of surface displacement monitoring data(mm)
监测单元 监测要素 数据范围 变化量 变化方向 监测周期 变化趋势 GNSS地表位移监测1 地表位移1_综合 3.6~176 mm 172.4 mm 向东北移动(88°) 829天 低速变形 地表位移1东西向 −2.8~83.2 mm 86.0 mm 向东移动 地表位移1南北向 1.7~−1.6 mm 3.3mm 向南移动 地表位移1垂直方向 −1.4~−154.6 mm 149.9 mm 向下移动 GNSS地表位移监测2 地表位移2_综合 4.2~173 mm 168.8 mm 向东北移动(67°) 829天 低速变形 地表位移2东西向 −1.8~91.5 mm 93.3 mm 向东移动 地表位移2南北向 1.1~36.8 mm 35.7 mm 向北移动 地表位移2垂直方向 3.8~−141.3 mm 145.1 mm 向下移动 表 5 地表裂缝监测数据分析表(mm)
Table 5. Summary table of surface crack monitoring data (mm)
序号 管道桩号 监测要素 数据范围 变化量 监测周期 当前变化趋势 1 DD282 地表裂缝1 0~78 mm 78 mm 829天 低速变形 地表裂缝2 0~151 mm 151 mm 829天 低速变形 表 6 深部位移监测数据分析表 (mm)
Table 6. Summary table of deep displacement monitoring data(mm)
序号 管道桩号 监测点位及传感器埋深(m) 数据范围 变化量 变化方向 当前变化趋势 1 DD282 深部位移1_13 m 1.02~2.38 mm 1.36 mm 58° 基本稳定 深部位移1_24 m 14.45~15.47 mm 1.02 mm 58° 基本稳定 深部位移1_31 m 21.10~21.56 mm 0.46 mm 58° 基本稳定 2 深部位移2_13 m 10.90~10.83 mm 0.05 mm 58° 基本稳定 深部位移2_24 m 13.55~12.26 mm 0.07 mm 58° 基本稳定 深部位移2_31 m 7.92~7.32 mm 0.60 mm 58° 基本稳定 3 深部位移3_13 m 16.77~18.10 mm 1.33 mm 58° 基本稳定 深部位移3_25 m 21.03~20.41 mm 0.62 mm 58° 基本稳定 深部位移3_32 m 19.36~19.45 mm 0.09 mm 58° 基本稳定 表 7 雨量监测数据分析表(mm)
Table 7. Summary of Rainfall monitoring data(mm)
序号 管道桩号 监测要素 数据范围 单日最大降雨量 周期累计降雨量 备注(累计降雨量发生周期) 1 DD282 雨量 0~138.5 mm 138.5 mm 221.5 mm 2020年8月2日—6日 -
[1] 李智毅,颜宇森,雷海英. 西气东输工程建设用地区的地质灾害[J]. 地质力学学报,2004,10(3):253 − 259. [LI Zhiyi,YAN Yusen,LEI Haiying. Geological hazards in the area for the construction of pipelines in the project of diversion of natural gas from the western to the eastern region[J]. Journal of Geomechanics,2004,10(3):253 − 259. (in Chinese with English abstract) [2] 鲜福,关惠平,姚安林,等. 西气东输管道地质灾害辨识[J]. 油气田地面工程,2010,29(3):80 − 82. [XIAN Fu,GUAN Huiping,YAO Anlin,et al. Geological Disaster Identification of West - East Gas Pipeline[J]. Oil-Gas Field Surface Engineering,2010,29(3):80 − 82. (in Chinese) doi: 10.3969/j.issn.1006-6896.2010.03.048 [3] 席莎,文宝萍. 西气东输甘-陕-晋段滑坡对管道的破坏特点[J]. 人民长江,2018,49(2):62 − 68. [XI Sha,WEN Baoping. Deformation characteristics of West-to-East Gas Pipelines in Gansu-Shaanxi-Shanxi caused by landslides[J]. Yangtze River,2018,49(2):62 − 68. (in Chinese with English abstract) doi: 10.16232/j.cnki.1001-4179.2018.02.013 [4] 张茂省,李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 540. [ZHANG Maosheng,LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530 − 540. (in Chinese with English abstract) [5] 李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划—以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:a case study of Liulin County of Shanxi ProvinceFull text replacement[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.02-13 [6] 刘朋飞,李滨,陈志新. 陕西延安地区黄土滑坡特征及其活跃性分期[J]. 中国地质灾害与防治学报,2012,23(4):16 − 19. [LIU Pengfei,LI Bin,CHEN Zhixin. Characteristics and staging of the loess landslide in the Yan’an area,Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2012,23(4):16 − 19. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2012.04.016 [7] 王新刚,刘凯,王友林,等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质,2022,49(5):137 − 143. [WANG Xingang,LIU Kai,WANG Youlin,et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology,2022,49(5):137 − 143. (in Chinese with English abstract) [8] 李锴,李江,顾清林,等. 西气东输智慧管网建设实践[J]. 油气储运,2021,40(3):241 − 248. [LI Kai,LI Jiang,GU Qinglin,et al. Practice of intelligent pipeline network development in West-East Gas Pipeline[J]. Oil & Gas Storage and Transportation,2021,40(3):241 − 248. (in Chinese with English abstract) [9] 董绍华,张轶男,左丽丽. 中外智慧管网最新发展、存在问题及解决方案[J]. 油气储运,2021,40(01):1 − 8. [Dong Shaohua,ZHANG Yinan,ZUO Lili. Intelligent pipeline network at home and abroad:recent development,existing problems and solutions[J]. Oil & Gas Storage and Transportation,2021,40(01):1 − 8. (in Chinese with English abstract) [10] 顾清林, 毛健, 王子. 西气东输地质灾害防治实践与展望[R], 中国灾害防御协会油气储运自然灾害防治专业委员会第一届年会, 2019GU Qinglin, MAO Jian, WANG Zi. Practice and Prospect of Geological Disaster Prevention in West - East Gas Pipeline[R]. First Annual Meeting of China Disaster Prevention Association Oil and Gas Storage and Transportation Natural Disaster Prevention Committee, 2019. (in Chinese) [11] 邹永胜,李双琴,高建章,等. 天地联合的区域山地管道地质灾害监测预警体系研究[J]. 中国管理信息化,2020,23(15):192 − 196. [ZOU Yongsheng,LI Shuangqin,GAO Jianzhang,et al. Study on monitoring and early warning system of regional mountain pipeline geological disasters combined with heaven and earth[J]. China Management Informationization,2020,23(15):192 − 196. (in Chinese) [12] 李星宇. 滑坡变形高精度智能化监测预警技术研究与实践[J]. 中国地质灾害与防治学报,2020,31(6):21 − 29. [LI Xingyu. Research and practice of high-precision intelligent monitoring and early warning technology for landslide deformation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):21 − 29. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.06.03 [13] 杨成业,张涛,高贵,等. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2022,33(3):94 − 105. [YANG Chengye,ZHANG Tao,GAO Gui,et al. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha River Basin,Jiangda County,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):94 − 105. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.03-11 [14] ROGERS A E,INGALLS R P. Venus:mapping the surface reflectivity by radar interferometry[J]. Science,1969,165(3895):797 − 799. doi: 10.1126/science.165.3895.797 [15] MASSONNET D,ROSSI M,CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature,1993,364(6433):138 − 142. doi: 10.1038/364138a0 [16] 西气东输一线DD282滑坡治理项目岩土工程勘察报告[R]. 江苏省地质工程有限公司, 2015Geotechnical Investigation Report of DD282 Landslide Treatment Project in West-East Gas Pipeline[R]. Jiangsu Geological Engineering Co. , Ltd. , 2015. (in Chinese) [17] 西气东输一线管道工程DD282滑坡补充勘查项目岩土工程勘查报告[R]. 中国石油天然气管道工程有限公司, 2021.Geotechnical Investigation Report of DD282 Landslide Supplementary Exploration Project of West-East Gas Pipeline Project[R]. China National Petroleum Pipeline Engineering Co. , Ltd. , 2021. (in Chinese) [18] 国家管网公司西气东输分公司输气管道地质灾害监测报告[R]. 北京中地华安科技股份有限公司, 2022Geological Disaster Monitoring Report of Gas Transmission Pipeline of National Pipe Network Company West - East Gas Transmission Branch[R]. Beijing Zhongdi Huaan Technology Co. , Ltd. , 2022. (in Chinese) [19] 刘银鹏,李同录,胡向阳,等. 陇东陕甘边界降雨水毁灾情调查与启示[J]. 中国地质灾害与防治学报,2022,33(3):77 − 83. [LIU Yinpeng,LI Tonglu,HU Xiangyang,et al. Investigation of water induced damages triggered by rainfall in East Gansu and the implications[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):77 − 83. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.03-09 [20] LI Ping,LI Tonglu,VANAPALLI S K. Influence of environmental factors on the wetting front depth:a case study in the Loess Plateau[J]. Engineering Geology,2016,214:1 − 10. doi: 10.1016/j.enggeo.2016.09.008 [21] 黄玉华,武文英,冯卫,等. 陕北延安“7·3暴雨”诱发地质灾害主要类型与特征[J]. 西北地质,2014,47(3):140 − 146. [HUANG Yuhua,WU Wenying,FENG Wei,et al. Main types and characteristics of the geo-hazards triggered by heavy rain on July 3 in Yan’an,Shaanxi[J]. Northwestern Geology,2014,47(3):140 − 146. (in Chinese with English abstract) [22] 张茂省,韩乾隆,黄玉华,等. 黄土高原沟谷型滑坡整治研究—以延安市子长县阎家沟滑坡为例[J]. 水文地质工程地质,2011,38(2):135 − 138. [ZHANG Maosheng,HAN Qianlong,HUANG Yuhua,et al. A study of remediation of valley-type landslides in the Loess Plateau:Exemplified by the Yanjiagou landslide in Zichang County of Yan’an[J]. Hydrogeology & Engineering Geology,2011,38(2):135 − 138. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.02.024 [23] 范立民,李勇,宁奎斌,等. 黄土沟壑区小型滑坡致大灾及其机理[J]. 灾害学,2015,30(3):67 − 70. [FAN Limin,LI Yong,NING Kuibin,et al. Small landslide and disaster-causing mechanism in gully loess area[J]. Journal of Catastrophology,2015,30(3):67 − 70. (in Chinese with English abstract) [24] 王滔,赵学理,齐普荣. 持续强降雨对黄土地区滑坡地质灾害的影响—以延安地区为例[J]. 地质调查与研究,2014,37(3):224 − 229. [WANG Tao,ZHAO Xueli,QI Purong. Impact of continued heavy rainfall on loess land slide hazard areas:a case study on Yan’an[J]. Geological Survey and Research,2014,37(3):224 − 229. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4135.2014.03.011 [25] 张珊珊. 黄土斜坡优势通道及优势入渗规律[R]. 中国地质大学(北京), 2018ZHANG Shanshan. The preferential passage and the law of preferential infiltration of Loess slope[R]. China University of Geosciences (Beijing), 2018(in Chinese with English abstract) -