ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西气东输管道工程陕西岭湾村滑坡变形特征及成因机制分析

王子 王栋 李艳军 安培源

王子,王栋,李艳军,等. 西气东输管道工程陕西岭湾村滑坡变形特征及成因机制分析[J]. 中国地质灾害与防治学报,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209012
引用本文: 王子,王栋,李艳军,等. 西气东输管道工程陕西岭湾村滑坡变形特征及成因机制分析[J]. 中国地质灾害与防治学报,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209012
WANG Zi,WANG Dong,LI Yanjun,et al. Analysis on deformation mechanism of the lingwan village landslide in Shaanxi Province section of the West-East Gas Pipeline Project[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209012
Citation: WANG Zi,WANG Dong,LI Yanjun,et al. Analysis on deformation mechanism of the lingwan village landslide in Shaanxi Province section of the West-East Gas Pipeline Project[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209012

西气东输管道工程陕西岭湾村滑坡变形特征及成因机制分析

doi: 10.16031/j.cnki.issn.1003-8035.202209012
详细信息
    作者简介:

    王子:王 子(1984-),男,大学本科,工程师,主要从事管道完整性研究。E-mail:275605586@qq.com

    通讯作者:

    李艳军(1984-),男,博士研究生,高级工程师,主要从事地质灾害防治工作。E-mail:21115070@bjtu.edu.cn

  • 中图分类号: 中图分类号: 文献标志码:A 文章编号:1000-3665(202*)0*-00**-**

Analysis on deformation mechanism of the lingwan village landslide in Shaanxi Province section of the West-East Gas Pipeline Project

  • 摘要: 以西气东输管道余家坪镇岭湾村一处正在变形的黄土滑坡为研究对象,基于现场勘察、InSAR、GNSS监测和深部位移监测等,分析滑坡2017年~2022年的变形特征及滑坡成因机制。研究表明:滑坡地下水位已达坡脚,滑坡前缘形成多处“土溜”,滑坡地表垂直潜蚀裂缝发育,后缘可见贯通的裂缝,滑坡内管道周边裂缝发育;InSAR数据显示滑坡一直缓慢变形,年变形量在2.0~4.0 cm之间; GNSS变形及裂缝变形显示,2020年8月至今地表变形速率增大,变形明显,变形量在4~10 cm;深部变形监测数据变化量在0.05~1.36 mm,变化很小;降雨及土体含水率数据分析表明滑坡在暴雨后发生位移变形。综合分析监测数据表明,岭湾村滑坡属于降雨诱发的浅层滑坡;区域内的自然强降雨、人类工程经济活动作为滑坡的诱发因素,对滑坡的发生及发展作用明显。结合管道应变监测数据,目前西气东输管道遭受滑坡灾害的风险可控。
  • 图  1  子长市岭湾村滑坡平面分布图

    Figure  1.  Landslide location plane map of Lingwan Village, Zichang City

    图  2  子长市岭湾村滑坡地质剖面图

    Figure  2.  Landslide geological cross-section profile of Lingwan Village, Zichang City

    图  3  子长市岭湾村滑坡监测点分布图

    Figure  3.  Distribution map of Landslide monitoring points in Lingwan Village, Zichang City

    图  4  研究区年平均沉降速率

    Figure  4.  Annual average ground subsidence rate in the study area

    图  5  研究区年平均沉降速率拟合图

    Figure  5.  Contour fitting plot of annual average ground subsidence rate in the study area

    图  6  滑坡区周边年平均沉降速率拟合图

    Figure  6.  5 Contour fitting plot of annual average ground subsidence rate around the landslide area

    图  7  滑坡中前部贯通性裂缝及地表下陷

    Figure  7.  The Penetrating cracks and the ground surface subsidence in the mid-to-front area of the landslide

    图  8  滑坡中部平台地表发育潜蚀洞穴

    Figure  8.  Development of suffusion caves on the ground surface of the central area of the landsilde

    图  9  地表位移监测曲线图

    Figure  9.  Ground surface displacement monitoring curve

    图  10  地表裂缝监测曲线图

    Figure  10.  Surface crack monitoring curve

    图  11  深部位移1监测曲线图

    Figure  11.  Deep displacement monitoring curve (No.1)

    图  12  深部位移2监测曲线图

    Figure  12.  Deep displacement monitoring curve (No.2)

    图  13  深部位移3监测曲线图

    Figure  13.  Deep displacement monitoring curve (No.3)

    图  14  研究区降雨量监测曲线图(上图:2020年,下图:2021年)

    Figure  14.  Rainfall monitoring curve in the study area (above:2020, below:2021)

    图  15  研究区含水率监测曲线图

    Figure  15.  Moisture content monitoring curve in the study area

    图  16  研究区孔隙水压力监测曲线图

    Figure  16.  Pore water pressure monitoring curve in study area

    图  17  岭湾村滑坡及周边地表水及地下水排泄路径

    Figure  17.  Surface Water and Groundwater drainage paths in the surrounding area of the landslide in Lingwan Village

    图  18  坡体前缘地下水沿红土层顶部外渗形成泥流

    Figure  18.  Formation of mudflow caused by groundwater seepage along the top of the red soil layer at the front edge of the landslide

    表  1  子长市岭湾村滑坡监测点布置情况

    Table  1.   Summary of Landslide Monitoring Points in Lingwan Village, Zichang City

    序号输气管道监测点位置监测要素安装时间
    1西气东输管道子长市余家坪镇岭湾村雨量(1个)、裂缝(2个)、孔隙水压力(3个)、位移(3个)、
    深部位移(3个)、含水率(3个)、应变计(3个截面)
    2019年12月
    下载: 导出CSV

    表  2  主要监测设备参数

    Table  2.   Main Monitoring Equipment Parameters

    序号监测要素监测设备参数指标
    1地表位移监测一体化GNSS形变自动监测站一体化GNSS形变自动检测站全星座支持;精度平面:±(2.5 mm+0.5*10-6D),高程:±(5 mm+0.5*10-6D)
    2深部位移监测一体化深部测斜监测站量程:±10 °C;测量精度:±0.1%FS;长期稳定性:±0.25%FS/年;分辨率:±10弧秒(±0.05 mm/m)。
    3地表裂缝监测一体化表面裂缝自动监测站测量范围:0~5000 mm;测量方向:双向;测量精度:±0.1%mmFS;拉线材质:铟钢丝。
    4地下水位监测测压管及透气型渗压计量程:35 m;精度等级:±0.05~±0.2%FS;非线性度:±0.1~±0.2%FS;
    下载: 导出CSV

    表  3  岭湾村滑坡区域时序地表形变量分析(2017.3—2020.4)

    Table  3.   Time-series surface deformation analysis of Lingwan Village landslide (2017.3—2020.4)

    时间2017年2018年2019年2020年
    3—6月7—12月1—6月7—12月1—6月7—12月1—4月
    累计形变量(mm)-6.81mm-4.31mm-6.64mm-8.57mm-4.87mm-4.41mm-0.29mm
    下载: 导出CSV

    表  4  地表位移监测数据分析表(mm)

    Table  4.   Summary table of surface displacement monitoring data(mm)

    监测单元监测要素数据范围变化量变化方向监测周期变化趋势
    GNSS地表位移监测1地表位移1_综合3.6~176 mm172.4 mm向东北移动(88°)829天低速变形
    地表位移1东西向−2.8~83.2 mm86.0 mm向东移动
    地表位移1南北向1.7~−1.6 mm3.3mm向南移动
    地表位移1垂直方向−1.4~−154.6 mm149.9 mm向下移动
    GNSS地表位移监测2地表位移2_综合4.2~173 mm168.8 mm向东北移动(67°)829天低速变形
    地表位移2东西向−1.8~91.5 mm93.3 mm向东移动
    地表位移2南北向1.1~36.8 mm35.7 mm向北移动
    地表位移2垂直方向3.8~−141.3 mm145.1 mm向下移动
    下载: 导出CSV

    表  5  地表裂缝监测数据分析表(mm)

    Table  5.   Summary table of surface crack monitoring data (mm)

    序号管道桩号监测要素数据范围变化量监测周期当前变化趋势
    1DD282地表裂缝10~78 mm78 mm829天低速变形
    地表裂缝20~151 mm151 mm829天低速变形
    下载: 导出CSV

    表  6  深部位移监测数据分析表 (mm)

    Table  6.   Summary table of deep displacement monitoring data(mm)

    序号管道桩号监测点位及传感器埋深(m)数据范围变化量变化方向当前变化趋势
    1DD282深部位移1_13 m1.02~2.38 mm1.36 mm58°基本稳定
    深部位移1_24 m14.45~15.47 mm1.02 mm58°基本稳定
    深部位移1_31 m21.10~21.56 mm0.46 mm58°基本稳定
    2深部位移2_13 m10.90~10.83 mm0.05 mm58°基本稳定
    深部位移2_24 m13.55~12.26 mm0.07 mm58°基本稳定
    深部位移2_31 m7.92~7.32 mm0.60 mm58°基本稳定
    3深部位移3_13 m16.77~18.10 mm1.33 mm58°基本稳定
    深部位移3_25 m21.03~20.41 mm0.62 mm58°基本稳定
    深部位移3_32 m19.36~19.45 mm0.09 mm58°基本稳定
    下载: 导出CSV

    表  7  雨量监测数据分析表(mm)

    Table  7.   Summary of Rainfall monitoring data(mm)

    序号管道桩号监测要素数据范围单日最大降雨量周期累计降雨量备注(累计降雨量发生周期)
    1DD282雨量0~138.5 mm138.5 mm221.5 mm2020年8月2日—6日
    下载: 导出CSV
  • [1] 李智毅,颜宇森,雷海英. 西气东输工程建设用地区的地质灾害[J]. 地质力学学报,2004,10(3):253 − 259. [LI Zhiyi,YAN Yusen,LEI Haiying. Geological hazards in the area for the construction of pipelines in the project of diversion of natural gas from the western to the eastern region[J]. Journal of Geomechanics,2004,10(3):253 − 259. (in Chinese with English abstract)
    [2] 鲜福,关惠平,姚安林,等. 西气东输管道地质灾害辨识[J]. 油气田地面工程,2010,29(3):80 − 82. [XIAN Fu,GUAN Huiping,YAO Anlin,et al. Geological Disaster Identification of West - East Gas Pipeline[J]. Oil-Gas Field Surface Engineering,2010,29(3):80 − 82. (in Chinese) doi: 10.3969/j.issn.1006-6896.2010.03.048
    [3] 席莎,文宝萍. 西气东输甘-陕-晋段滑坡对管道的破坏特点[J]. 人民长江,2018,49(2):62 − 68. [XI Sha,WEN Baoping. Deformation characteristics of West-to-East Gas Pipelines in Gansu-Shaanxi-Shanxi caused by landslides[J]. Yangtze River,2018,49(2):62 − 68. (in Chinese with English abstract) doi: 10.16232/j.cnki.1001-4179.2018.02.013
    [4] 张茂省,李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 540. [ZHANG Maosheng,LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530 − 540. (in Chinese with English abstract)
    [5] 李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划—以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:a case study of Liulin County of Shanxi ProvinceFull text replacement[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.02-13
    [6] 刘朋飞,李滨,陈志新. 陕西延安地区黄土滑坡特征及其活跃性分期[J]. 中国地质灾害与防治学报,2012,23(4):16 − 19. [LIU Pengfei,LI Bin,CHEN Zhixin. Characteristics and staging of the loess landslide in the Yan’an area,Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2012,23(4):16 − 19. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2012.04.016
    [7] 王新刚,刘凯,王友林,等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质,2022,49(5):137 − 143. [WANG Xingang,LIU Kai,WANG Youlin,et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology,2022,49(5):137 − 143. (in Chinese with English abstract)
    [8] 李锴,李江,顾清林,等. 西气东输智慧管网建设实践[J]. 油气储运,2021,40(3):241 − 248. [LI Kai,LI Jiang,GU Qinglin,et al. Practice of intelligent pipeline network development in West-East Gas Pipeline[J]. Oil & Gas Storage and Transportation,2021,40(3):241 − 248. (in Chinese with English abstract)
    [9] 董绍华,张轶男,左丽丽. 中外智慧管网最新发展、存在问题及解决方案[J]. 油气储运,2021,40(01):1 − 8. [Dong Shaohua,ZHANG Yinan,ZUO Lili. Intelligent pipeline network at home and abroad:recent development,existing problems and solutions[J]. Oil & Gas Storage and Transportation,2021,40(01):1 − 8. (in Chinese with English abstract)
    [10] 顾清林, 毛健, 王子. 西气东输地质灾害防治实践与展望[R], 中国灾害防御协会油气储运自然灾害防治专业委员会第一届年会, 2019

    GU Qinglin, MAO Jian, WANG Zi. Practice and Prospect of Geological Disaster Prevention in West - East Gas Pipeline[R]. First Annual Meeting of China Disaster Prevention Association Oil and Gas Storage and Transportation Natural Disaster Prevention Committee, 2019. (in Chinese)
    [11] 邹永胜,李双琴,高建章,等. 天地联合的区域山地管道地质灾害监测预警体系研究[J]. 中国管理信息化,2020,23(15):192 − 196. [ZOU Yongsheng,LI Shuangqin,GAO Jianzhang,et al. Study on monitoring and early warning system of regional mountain pipeline geological disasters combined with heaven and earth[J]. China Management Informationization,2020,23(15):192 − 196. (in Chinese)
    [12] 李星宇. 滑坡变形高精度智能化监测预警技术研究与实践[J]. 中国地质灾害与防治学报,2020,31(6):21 − 29. [LI Xingyu. Research and practice of high-precision intelligent monitoring and early warning technology for landslide deformation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):21 − 29. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.06.03
    [13] 杨成业,张涛,高贵,等. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2022,33(3):94 − 105. [YANG Chengye,ZHANG Tao,GAO Gui,et al. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha River Basin,Jiangda County,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):94 − 105. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.03-11
    [14] ROGERS A E,INGALLS R P. Venus:mapping the surface reflectivity by radar interferometry[J]. Science,1969,165(3895):797 − 799. doi: 10.1126/science.165.3895.797
    [15] MASSONNET D,ROSSI M,CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature,1993,364(6433):138 − 142. doi: 10.1038/364138a0
    [16] 西气东输一线DD282滑坡治理项目岩土工程勘察报告[R]. 江苏省地质工程有限公司, 2015

    Geotechnical Investigation Report of DD282 Landslide Treatment Project in West-East Gas Pipeline[R]. Jiangsu Geological Engineering Co. , Ltd. , 2015. (in Chinese)
    [17] 西气东输一线管道工程DD282滑坡补充勘查项目岩土工程勘查报告[R]. 中国石油天然气管道工程有限公司, 2021.

    Geotechnical Investigation Report of DD282 Landslide Supplementary Exploration Project of West-East Gas Pipeline Project[R]. China National Petroleum Pipeline Engineering Co. , Ltd. , 2021. (in Chinese)
    [18] 国家管网公司西气东输分公司输气管道地质灾害监测报告[R]. 北京中地华安科技股份有限公司, 2022

    Geological Disaster Monitoring Report of Gas Transmission Pipeline of National Pipe Network Company West - East Gas Transmission Branch[R]. Beijing Zhongdi Huaan Technology Co. , Ltd. , 2022. (in Chinese)
    [19] 刘银鹏,李同录,胡向阳,等. 陇东陕甘边界降雨水毁灾情调查与启示[J]. 中国地质灾害与防治学报,2022,33(3):77 − 83. [LIU Yinpeng,LI Tonglu,HU Xiangyang,et al. Investigation of water induced damages triggered by rainfall in East Gansu and the implications[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):77 − 83. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.03-09
    [20] LI Ping,LI Tonglu,VANAPALLI S K. Influence of environmental factors on the wetting front depth:a case study in the Loess Plateau[J]. Engineering Geology,2016,214:1 − 10. doi: 10.1016/j.enggeo.2016.09.008
    [21] 黄玉华,武文英,冯卫,等. 陕北延安“7·3暴雨”诱发地质灾害主要类型与特征[J]. 西北地质,2014,47(3):140 − 146. [HUANG Yuhua,WU Wenying,FENG Wei,et al. Main types and characteristics of the geo-hazards triggered by heavy rain on July 3 in Yan’an,Shaanxi[J]. Northwestern Geology,2014,47(3):140 − 146. (in Chinese with English abstract)
    [22] 张茂省,韩乾隆,黄玉华,等. 黄土高原沟谷型滑坡整治研究—以延安市子长县阎家沟滑坡为例[J]. 水文地质工程地质,2011,38(2):135 − 138. [ZHANG Maosheng,HAN Qianlong,HUANG Yuhua,et al. A study of remediation of valley-type landslides in the Loess Plateau:Exemplified by the Yanjiagou landslide in Zichang County of Yan’an[J]. Hydrogeology & Engineering Geology,2011,38(2):135 − 138. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.02.024
    [23] 范立民,李勇,宁奎斌,等. 黄土沟壑区小型滑坡致大灾及其机理[J]. 灾害学,2015,30(3):67 − 70. [FAN Limin,LI Yong,NING Kuibin,et al. Small landslide and disaster-causing mechanism in gully loess area[J]. Journal of Catastrophology,2015,30(3):67 − 70. (in Chinese with English abstract)
    [24] 王滔,赵学理,齐普荣. 持续强降雨对黄土地区滑坡地质灾害的影响—以延安地区为例[J]. 地质调查与研究,2014,37(3):224 − 229. [WANG Tao,ZHAO Xueli,QI Purong. Impact of continued heavy rainfall on loess land slide hazard areas:a case study on Yan’an[J]. Geological Survey and Research,2014,37(3):224 − 229. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4135.2014.03.011
    [25] 张珊珊. 黄土斜坡优势通道及优势入渗规律[R]. 中国地质大学(北京), 2018

    ZHANG Shanshan. The preferential passage and the law of preferential infiltration of Loess slope[R]. China University of Geosciences (Beijing), 2018(in Chinese with English abstract)
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  145
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 录用日期:  2023-03-30
  • 修回日期:  2023-02-02
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回