Controlling influence of the “perched water structure” on rainfall-induced landslide: A case study of the Yaogou landslide in Zhushan County, Hubei Province
-
摘要:
窑沟滑坡因其独特的含水层特征及差异性的渗透特征,强降雨后地下水在滑坡中排泄受阻形成短时承压水,此类下伏弱透水岩土体的滑坡含水层即为滞水构造。通过对窑沟滑坡2年的降雨量、地下水位、含水率、位移等数据进行监测,发现滑坡承压水头随降雨陡升缓降,具有明显的“滞水”特征。采用Geostudio软件模拟降雨入渗过程,验证了滑体承受承压水作用,且承压水的抬升幅度、作用位置与观测情况基本一致。滑坡稳定系数与压力水头呈现变化曲率基本一致的反向曲线。表明滑坡的“滞水构造”对滑坡的承压水头的形成及滑坡的稳定性具有明显的控制作用。
Abstract:The Yaogou landslide, located in Zhushan County, Hubei Province, exhibits distinctive aquifer characteristics and varying permeability, leading to the retention of groundwater within the landslide after rainfall, forming confined water. This kind of landslide aquifer underlying weakly permeable rock and soil mass is called a “stagnant water structure”. By monitoring a two-year dataset of rainfall, groundwater level, water content and displacement of the Yaogou landslide, it was found that the confined water head of the landslide fell slowly with the sharp rise of rainfall, which showed an obvious "stagnant water" pattern. Geostudio software was used to simulate the rainfall infiltration process, and it was verified that the sliding body was subjected to the action of confined water, and the lifting amplitude and acting position of confined water were basically consistent with the observed situation. The landslide stability coefficient and pressure head exhibited a reverse curve with a consistent curvature. It showed that the "water stagnation structure" of the landslide had a significant controlling effect on the formation of confined water head and the stability of landslide. This emphasizes the significant control exerted by the "water stagnation structure" on confined water head formation and landslide stability.
-
Keywords:
- landslide /
- rainfall infiltration /
- confined water /
- stagnant water structure /
- stability
-
0. 引言
据统计,湖北省鄂西北地区86%的堆积层滑坡失稳是由降雨引起[1]。2017年9月至10月,十堰地区持续性强降雨,全市发生地质灾害灾情1000多起。竹山县城9月底至10月中旬累计降雨达到330 mm,仅县城附近就发生窑沟滑坡、邓坪滑坡、李家坪滑坡、南门滑坡等多处大中型滑坡[1]。贺可强等[2]以三峡库区典型堆积层滑坡为例,认为堆积层滑坡由于下伏基岩的弱透水性导致降雨或地下水补给的地下水在基岩面以上大量集聚,因而坡体内孔隙水压力的作用是该类滑坡失稳主要动因。汪磊等[3]对浙江省丽水市范山头滑坡进行研究,认为松散堆积层边坡中往往分布相对隔水层,渗透性二元结构堆积体是其中的典型类型,降雨入渗在边坡的某些部位形成瞬态承压水[4],会导致边坡失稳。章校等 [5]对江苏省宁镇地区山前缓坡滑坡机理进行了研究,分析了暂时性承压水诱发缓坡滑动的内在机理。孟生勇等[6] 、胡爱国等[7] 、尚敏等[8] 、檀梦皎等[9]研究了堆积层滑坡在降雨作用下水土响应规律及对滑坡的影响。魏占玺等[10]通过试验模拟研究了不同含水率状态下滑坡的抗剪强度变化。李宁等[11] 、石爱红等[12] 、唐红梅等[13] 、林鸿州等[14]研究了降雨状态下滑坡稳定性计算模型。这些研究对降雨型滑坡渗流的动态变化过程和对滑坡稳定性影响的复杂性论述较少。
本文依托对湖北省竹山县窑沟滑坡[15]的工程地质勘查和长达4年的专业监测,揭示了降雨通过孔隙承压水对降雨型滑坡的致滑作用, 提出了“滞水构造”的概念,采用Geostudio软件对滑坡滞水过程进行了模拟,验证了“滞水构造”的作用过程,绘制了降雨、压力水头与滑坡稳定性的关系曲线,揭示了“滞水构造”对滑坡稳定性的控制作用。
1. 滑坡地质特征
1.1 滑坡概况
窑沟滑坡位于湖北省十堰市竹山县城关镇窑沟村,堵河左岸,属鄂西北构造侵蚀中低山区。窑沟滑坡平面上呈倒葫芦形(图1),滑坡纵长240 m,前缘宽60~100 m,后缘宽220 m,主滑方向141°,面积4.3×104 m2,滑体平均厚10.6 m,规模约45.2×104 m3,属于中型土质滑坡。
滑坡所在斜坡呈两脊夹一沟的地貌形态,坡体中下部因人类改造形成多级缓坡平台,滑坡体坡面地形平缓,坡度仅为11°,地形地貌上有利于后部山体降雨向滑坡区汇集。
1.2 滑坡物质结构特征
根据窑沟滑坡防治工程可行性研究勘查[16]所做的土工试验成果,滑体为坡洪积粉质黏土,可塑性变化较大,中后部以硬塑为主,天然重度平均值19.6 kN/m3,直剪试验内摩擦角标准值为17.1°,黏聚力标准值为31.1 kPa。
滑带以粉质黏土和其下片岩、卵砾石接触带的可塑状粉质黏土及含碎石粉质黏土为主,室内直剪试验摩擦角为15.0°~16.0°,标准值为15.1°,黏聚力为16.0~20.0 kPa,标准值16.0 kPa。
滑坡滑床主要为强-中风化绢云母片岩,片理产状倾向为324°,倾角为34°。
1.3 滑坡水文地质特征
根据现场试坑渗水试验[1]和室内渗透试验[6],滑体粉质黏土渗透系数2.93×10−6~9.99×10−6 cm/s,为极弱透水层。
滑带主要为粉质黏土,为极弱透水层。
滑坡滑床为强-中风化绢云母片岩,部分地段为强-中等透水的卵石层、碎石土等,粉土、卵砾石层渗透系数2.5×10−4 cm/s,为中等透水层,在滑坡体前部逐渐尖灭。强风化绢云母片岩为中等至弱透水层。卵砾石和强风化绢云母片岩形成倾斜含水层(图2)。
2. 滞水构造的主要特征
2.1 滞水构造的提出
基于窑沟滑坡水文地质特征,我们提出了堆积层中存在缓倾斜短时承压含水层的水文地质模型——滞水构造。该类型滑坡滑体为弱透水或极弱透水的粉质黏土或含碎石粉质黏土,滑床上部存在一层强—中等透水性岩土体,该层岩土体倾斜分布使得其具有形成短时承压性水的可能,即为“滞水构造”。
“滞水构造”不是相对封闭的储水空间,其大部分时间不饱水,所以也不能等同于“承压性含水层”。“滞水构造”对补给水具有储水、排水能力,在强降雨条件下会因排水不畅形成承压水,为了便于对此类水文地质条件进行研究,故名“滞水构造”。模型如图2所示。
2.2 滞水构造的主要特征
滑坡体中的“滞水构造”有如下二个明显特征:
(1)滑坡体存在相对弱透水的 “盖层”,其下为透水性较强的倾斜含水层。“盖层”通常为粉质黏土或含碎石粉质黏土,“盖层”不需要在平面上完整,竖向上也不必全为弱透水层,也不需要完全隔水,只要相对其下岩土层透水性弱即可。对于山前坡洪积堆积层,粒度分布上经常形成下粗上细的“二元结构”,较容易形成滞水盖层。由于透水岩土体倾斜使得其较易形成承压性水。
(2)有不均衡的水源补给,短时承压含水层存在排泄不畅。承压含水层的水源补给可以是降雨、地下水、地表水体或三者兼而有之,多以降雨为主。排泄不畅可以是平面上收窄(如本例的窑沟滑坡)或竖向含水层变薄或尖灭,也有是坡体下方土体中细颗粒增多,渗透性变弱。
由于斜坡堆积层物质成分复杂,透镜状、楔形的不均匀岩土体常见[17 − 18]。因此,“滞水构造”在堆积层斜坡中具有一定的普遍性。
3. 滑坡降雨滞水变形监测
窑沟,滑坡变形发生后,于2019年进行了专业监测,在滑坡2-2'剖面上布设4处GNSS位移监测点、3个地下水位监测孔、1处3个层位的土壤含水率监测点、2处流量计、1处雨量计(图1)。
3.1 土壤含水率监测分析
在滑坡中部设置有1处土壤含水率测试,分别位于0.5 m,1.0 m,1.5 m三个深度,含水率监测较好反映了滑体土壤含水率随降雨强度的变化趋势(图3)。在长时间持续降雨后,0.5m处含水率维持在36 %,含水率增幅为4.5%;1 m处含水率升至34 %左右,含水率增幅为7.5%;1.5 m处含水率升至32 %左右,含水率增幅为6.5%。表明降雨通过地表入渗影响滑坡作用程度有限,且不同深度滑体的含水率对短时降雨影响变化不敏感,在集中强降雨时,含水率才会发生显著变化。
3.2 地下水位监测分析
地下水位监测数据显示,持续性强降雨后滑坡地下水位同步上升,其中滑坡中部SW02地下水位变化与降雨作用关系密切(图4)。2019年7月19—8月17日期间,两次持续性降雨后 SW02地下水位均出现陡升缓降现象,地下水位最大升幅达7.59 m,且抬升速率约7 m/d。最高水位滞后降雨约2 d。
3.3 位移监测分析
2017年滑坡发生后,2018年底至2019年初施工了部分应急治理工程,应急工程主要有地表排水沟、灌注桩挡墙等,增强了滑坡的稳定性。2019年,在窑沟滑坡体主滑面上共布置4个 GNSS 监测点,从后缘至前缘依次为GNSS01、GNSS02、GNSS03、GNSS04。监测依据基准站解算得到各点绝对坐标,经计算得到合位移矢量,图5为降雨量-累计位移-时间监测曲线,滑坡前缘GNSS04位移量最大,至 2020年12月累计位移达158 mm;滑坡中前部GNSS03次之,累计位移为80 mm; 滑坡后部GNSS01的累计位移最小,为20 mm。各GNSS监测位移方向为140°至173°,与滑坡主滑方向接近并略偏向右侧缘。
2019年7月19日—8月17日期间,因持续性降雨地下水位因滞水构造作用陡升后,GNSS01、GGNSS02、GGNSS03均发生了位移变化,尤其是位于滑坡体前缘的GNSS04位移增量超过了20 mm。由于实施了应急治理工程,各监测点位移反映滑坡未发生整体滑移,呈现牵引蠕滑的变形特征。
4. 降雨后滑坡滞水构造中渗流场形成过程模拟分析
4.1 模型建立及参数选取
根据勘查成果,依据窑沟滑坡2-2'主剖面适当简化,主要模拟滑坡在2017年强降雨时的降雨渗流情况。模型在Geostudio软件SEEP/W模块中建立,为保证计算精度,模型单元尺寸取1.0 m,网格单元数为36543个。根据物理力学试验结果、现场原位试验,综合确定窑沟滑坡岩土体各项参数见表1。
表 1 窑沟滑坡物理力学及水力学参数表Table 1. Physical mechanics and hydraulics parameters of Yaogou landslide材料 天然重度
/(kN·m−3)饱和重度
/(kN·m−3)天然黏聚力
/kPa天然内摩擦角
/(°)饱和黏聚力
/kPa饱和内摩擦角
/(°)渗透系数
/(cm·s−1)饱和含水率 粉质黏土 19.5 20.4 13.1 11.2 10.5 9.0 9.99×10−6 0.36 卵砾石 21.4 21.0 2.00×10−3 0.32 强风化片岩 25.5 27.0 2.50×10−4 0.06 边界条件是数值模拟最重要的部分之一,准确的边界条件是模拟结果合理性的保证[19]。本滑坡模型的边界条件设置如下:通过在左右两侧施加定水位,通过稳态渗流分析(计算时序第1—3天)得到接近滑坡勘察时的地下水水位作为降雨入渗计算的初始交件,滑坡体表面设置为自由入渗边界,按流量边界取值,大小等于降雨强度,因滑坡后缘平面入渗面积较大,滑坡前缘排水位置较窄,模拟时降雨强度适当增加。
4.2 降雨后渗流场的形成过程模拟
降雨选取了连续5 d (计算时序第4—8天)降雨量,分别为:分别是53 mm、76 mm、19 mm、2 mm、146.5 mm。渗流模拟持续时间为27 d (含降雨),每0.5 d保存计算结果。典型时间滑坡压力水头等值线见图6。
通过对连续降雨不同时间段的地下水渗流场模拟分析发现,开始降雨1 d后(计算时序第5天始),见图6(a),滑坡后缘土体迅速饱和;结束降雨1天半时(计算时序第9日中午初),见图6(b),坡体压力水应达到最高,滑体以下基岩风化带及卵砾石层基本饱水,因为滞水构造的作用,0 m压力水头线进入滑体粉质黏土层,滑面位置压力水头大于10 m;降雨结束后12 d (计算时序第20天始),见图6(c),滑体以下基岩风化带及卵砾石层承压水完全消散,压力水头零线略超过中风化基岩面,接近降雨前水位。
图7为滑面处压力水头随时间变化曲线图,压力水头随降雨陡然上升,在9.5 d达到最大值,承压水头为18.59 m。图8 为第9天滑面位置各点的压力水头,滑面前缘177 m长度均存在承压水头,在313.52 m位置,承压水头最高达到12.59 m。图9为降雨后坡体垂直方向上孔隙水压力曲线,滑体范围内出现负孔隙水压力,滑面以下压力水头迅速增高,出现承压水头,在强风化片岩底部压力水头又下降,甚至出现部分非饱和区。
模拟结果表明因滞水构造的存在,致使滑体承受承压水作用,在降雨过程中出滞水特征。承压水的作用位置与观测情况基本一致。
4.3 降雨-滞水作用过程
(1)潜在滑带大部分位于地下水位附近,长期处于饱和状态,滑带倾角平缓,在一般降雨条件下滑坡整体稳定,不会发生滑动。
(2)超过一定强度的降雨发生后,由于“滞水”作用造成滑坡体内的地下水排泄受阻,承压水头短时间内迅速抬升,导致滑体受到较大的浮托力作用发生变形。“滞水”部位的排泄能力决定了驱动滑坡变形的降雨量“阈值”。
(3)若单次降雨量足够大(如2017年10月),滑坡体中的承压水层水头增幅过大,滑坡稳定性下降,滑坡变形产生的大量裂缝又会加剧降雨的入渗,对滑坡的变形形成“正反馈”。
(4)窑沟滑坡平面上呈后缘宽前缘窄的“收口型”,同时滑面倾角后陡前缓,常理来讲中前部是阻滑段,因为滞水构造的承压作用,造成滑坡中前部块段稳定性低,形成了牵引式滑坡的变形特征。
(5)降雨停止后,滑坡滞水含水层中的承压水在数天内排出,承压水头缓慢下降,滑坡稳定性随之上升。
(6)滑坡在中前部裂缝排出承压水,地下水头降低,起到“刹车”作用,滑坡滑动趋缓。这是此类滑坡滑动速度较为缓慢的原因。
5. 滞水构造对降雨型滑坡的控制作用
5.1 滑坡稳定性计算
采用Geostudio软件的SLPOE/W模块对滑坡稳定性进行计算,分别计算了滑坡的整体稳定性(图10)和滑坡前缘的局部稳定性(图11)。图12为滑坡稳定系数随时间变化曲线图,稳定系数随降雨历时迅速降低,在第9.5天降至最低,整体稳定系数为1.012,局部稳定系数0.875。滑坡前缘局部稳定系数明显小于整体稳定性,这与滑坡宏观变形吻合。
5.2 滑坡变形特征
2017年 9月23日至10月18日滑坡区累计降雨量达330 mm,其中9月27日降雨量达58.7 mm。降雨期间窑沟滑坡出现局部坍滑、地表拉张裂缝、剪切裂缝、公路毁坏(图13)、排水沟挤压合拢(图14)等变形现象,滑坡前缘出现2.5 m的位移变形。
5.3 滞水构造的控制作用
分析降雨、渗流、压力水头与滑坡稳定性关系(图15),发现地下水渗流量、压力水头随降雨作用呈现陡升缓降的特点,呈现明显的滞水特征;滑坡稳定系数与压力水头呈现变化曲率基本一致的反向曲线,表明滞水构造对滑坡稳定性起到主导作用和控制作用。
6. 结语
(1)窑沟滑坡体为弱透水的“盖层”,其下岩土层透水较强,由于透水地层在滑坡前缘收窄及厚度变薄造成排水不畅,在强降雨时会形成短时承压水。滑坡专业监测表明,地下水头在强降雨历程中陡升缓降,形成短时承压水,是为“滞水构造”。
(2)应用Geostudio软件模拟滑坡降雨入渗过程,验证了降雨在滑坡体中渗流作用过程,模拟得出的承压水的抬升幅度、作用位置与观测情况基本一致。模拟结果更详细反映了整个滑坡体的地下水渗流场特征。
(3)滑坡渗流的动态过程研究表明:“滞水”部位的排泄能力决定了滑坡变形的降雨量“阈值”。滑坡在承压水浮托产生变形裂缝后,裂缝又造成降雨入渗加速,形成“正反馈”,而前缘裂缝的排水又会形成刹车效应,这是这一类滑坡滑动速度较为缓慢的原因。
(4)滑坡稳定性计算表明,滑坡稳定系数与压力水头呈现变化曲率基本一致的反向曲线。滑坡的“滞水构造”对滑坡的承压水头的形成及滑坡的稳定性具有明显的主导作用和控制作用。
-
表 1 窑沟滑坡物理力学及水力学参数表
Table 1 Physical mechanics and hydraulics parameters of Yaogou landslide
材料 天然重度
/(kN·m−3)饱和重度
/(kN·m−3)天然黏聚力
/kPa天然内摩擦角
/(°)饱和黏聚力
/kPa饱和内摩擦角
/(°)渗透系数
/(cm·s−1)饱和含水率 粉质黏土 19.5 20.4 13.1 11.2 10.5 9.0 9.99×10−6 0.36 卵砾石 21.4 21.0 2.00×10−3 0.32 强风化片岩 25.5 27.0 2.50×10−4 0.06 -
[1] 魏鹏飞,李丽华,许程程,等. 鄂西北变质岩地区降雨型堆积层滑坡稳定性研究报告[R]. 湖北:湖北省地质局第八地质大队,2022. [WEI Pengfei,LI Lihua,XU Chengcheng,et al. Study on the stability of rainfall accumulation bed landslide in metamorphic rock area of northwest Hubei Province[R].Hubei:8th Geological Brigade of Hubei Geological Bureau,2022. (in Chinese)] WEI Pengfei, LI Lihua, XU Chengcheng, et al. Study on the stability of rainfall accumulation bed landslide in metamorphic rock area of northwest Hubei Province[R].Hubei: 8th Geological Brigade of Hubei Geological Bureau, 2022. (in Chinese)
[2] 贺可强,阳吉宝,王思敬. 堆积层滑坡位移动力学理论及其应用:三峡库区典型堆积层滑坡例析[M]. 北京:科学出版社,2007. [HE Keqiang,YANG Jibao,WANG Sijing. Displacement dynamics theory on debris landslides & its application[M]. Beijing:Science Press,2007. (in Chinese)] HE Keqiang, YANG Jibao, WANG Sijing. Displacement dynamics theory on debris landslides & its application[M]. Beijing: Science Press, 2007. (in Chinese)
[3] 汪磊,尚岳全. 外部降雨条件和内部瞬态承压水作用对堆积层滑坡的影响分析和数值模拟[J]. 水土保持通报,2020,40(5):141 − 145. [WANG Lei,SHANG Yuequan. Analysis and numerical simulation on influence of external rainfall conditions and internal transient confined water on accumulation landslide[J]. Bulletin of Soil and Water Conservation,2020,40(5):141 − 145.(in Chinese with English abstract)] WANG Lei, SHANG Yuequan. Analysis and numerical simulation on influence of external rainfall conditions and internal transient confined water on accumulation landslide[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 141 − 145.(in Chinese with English abstract)
[4] 俞良晨,阎长虹,郭书兰,等. 受暂时性承压水影响的南京游子山滑动机制分析[J]. 水文地质工程地质,2020,47(1):133 − 141. [YU Liangchen,YAN Changhong,GUO Shulan,et al. An analysis of sliding mechanism of Youzi Mountain affected by temporary confined water in a confined quifer in Nanjing[J]. Hydrogeology & Engineering Geology,2020,47(1):133 − 141. (in Chinese with English abstract)] YU Liangchen, YAN Changhong, GUO Shulan, et al. An analysis of sliding mechanism of Youzi Mountain affected by temporary confined water in a confined quifer in Nanjing[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 133 − 141. (in Chinese with English abstract)
[5] 章校,阎长虹,郭书兰,等. 受暂时性承压水作用的山前缓坡稳定计算公式推求[J]. 工程地质学报,2021,29(5):1507 − 1514. [ZHANG Xiao,YAN Changhong,GUO Shulan,et al. Derivation of stability formula of gentle slope affected by temporary confined water[J]. Journal of Engineering Geology,2021,29(5):1507 − 1514.(in Chinese with English abstract)] ZHANG Xiao, YAN Changhong, GUO Shulan, et al. Derivation of stability formula of gentle slope affected by temporary confined water[J]. Journal of Engineering Geology, 2021, 29(5): 1507 − 1514.(in Chinese with English abstract)
[6] 孟生勇,江兴元,杨义,等. 降雨诱发堆积体滑坡水土响应与稳定性时空演化试验研究[J]. 水文地质工程地质,2023,50(1):104 − 112. [MENG Shengyong,JIANG Xingyuan,YANG Yi,et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology,2023,50(1):104 − 112. (in Chinese with English abstract)] MENG Shengyong, JIANG Xingyuan, YANG Yi, et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 104 − 112. (in Chinese with English abstract)
[7] 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. (in Chinese with English abstract)] HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27 − 34. (in Chinese with English abstract)
[8] 尚敏,徐鑫,Dave CHAN,等. 基于降雨渗流场变化的三峡库区白水河滑坡变形机制与预测[J]. 中国地质灾害与防治学报,2016,27(2):26 − 32. [SHANG Min,XU Xin,CHAN D,et al. Deformation mechanism and prediction of Baishuihe landslide based on the analysis of rainfall seepage field in China Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):26 − 32. (in Chinese with English abstract)] SHANG Min, XU Xin, CHAN D, et al. Deformation mechanism and prediction of Baishuihe landslide based on the analysis of rainfall seepage field in China Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2): 26 − 32. (in Chinese with English abstract)
[9] 檀梦皎,殷坤龙,付智勇,等. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析[J]. 中国地质灾害与防治学报,2022,33(1):45 − 57. [TAN Mengjiao,YIN Kunlong,FU Zhiyong,et al. Analysis on groundwater response characteristics of Madiwan landslide under the influence of rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):45 − 57. (in Chinese with English abstract)] TAN Mengjiao, YIN Kunlong, FU Zhiyong, et al. Analysis on groundwater response characteristics of Madiwan landslide under the influence of rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 45 − 57. (in Chinese with English abstract)
[10] 魏占玺,谢东武,毋远召,等. 基于动态残余强度的不同含水率条件下滑坡稳定性研究[J]. 水文地质工程地质,2022,49(2):126 − 136. [WEI Zhanxi,XIE Dongwu,WU Yuanzhao,et al. Research on landslide stability under different water content conditions based on the dynamic residual strength[J]. Hydrogeology & Engineering Geology,2022,49(2):126 − 136. (in Chinese with English abstract)] WEI Zhanxi, XIE Dongwu, WU Yuanzhao, et al. Research on landslide stability under different water content conditions based on the dynamic residual strength[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 126 − 136. (in Chinese with English abstract)
[11] 李宁,许建聪,钦亚洲. 降雨诱发浅层滑坡稳定性的计算模型研究[J]. 岩土力学,2012,33(5):1485 − 1490. [LI Ning,XU Jiancong,QIN Yazhou. Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. Rock and Soil Mechanics,2012,33(5):1485 − 1490. (in Chinese with English abstract)] LI Ning, XU Jiancong, QIN Yazhou. Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. Rock and Soil Mechanics, 2012, 33(5): 1485 − 1490. (in Chinese with English abstract)
[12] 石爱红,李国庆,丁德民,等. 考虑非饱和土基质吸力的丁家坡滑坡变形机制及稳定性评价[J]. 水文地质工程地质,2022,49(6):141 − 151. [SHI Aihong,LI Guoqing,DING Demin,et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology,2022,49(6):141 − 151. (in Chinese with English abstract)] SHI Aihong, LI Guoqing, DING Demin, et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 141 − 151. (in Chinese with English abstract)
[13] 唐红梅,魏来,唐云辉,等. 重庆地区降雨型滑坡相关性分析及预报模型[J]. 中国地质灾害与防治学报,2013(4):7. [TANG Hongmei,WEI Lai,TANG Yunhui,et al. Correlation analysis and prediction model of rainfall-type landslide in Chongqing[J]. Chinese Journal of Geological Hazard and Control,2013(4):7. (in Chinese with English abstract)] TANG Hongmei, WEI Lai, TANG Yunhui, et al. Correlation analysis and prediction model of rainfall-type landslide in Chongqing[J]. Chinese Journal of Geological Hazard and Control, 2013(4): 7. (in Chinese with English abstract)
[14] 林鸿州. 降雨诱发土质边坡失稳的试验与数值分析研究[D]. 北京:清华大学,2007. [LIN Hongzhou. The study on the mechanism and numerical analysis of rainfall-induced soil slope failure [D]. Beijing:Tsinghua University,2007. (in Chinese with English abstract)] LIN Hongzhou. The study on the mechanism and numerical analysis of rainfall-induced soil slope failure [D]. Beijing: Tsinghua University, 2007. (in Chinese with English abstract)
[15] 李丽华,张磊,薛梅. 湖北省竹山县城关镇窑沟滑坡防治工程可行性研究报告[R]. 湖北: 湖北省地质局第八地质大队,2017. [LI Lihua,ZHANG Lei,XUE Mei. Feasibility study report of Yaogou landslide control project,Chengguan Town,Zhushan County,Hubei Province[R]. Hubei: The 8th Geological Brigade of Hubei Geology Bureau,2017. (in Chinese)] LI Lihua, ZHANG Lei, XUE Mei. Feasibility study report of Yaogou landslide control project, Chengguan Town, Zhushan County, Hubei Province[R]. Hubei: The 8th Geological Brigade of Hubei Geology Bureau, 2017. (in Chinese)
[16] 李丽华, 镇方军.湖北省竹山县城关镇窑沟滑坡勘查报告[R]. 湖北:湖北省地质局第八地质大队, 2017. [LI Lihua, ZHEN Fangjun. Investigation report of Yaogou landslide, Chengguan Town, Zhushan County, Hubei Province[R]. Hubei:The 8th Geological Brigade of Hubei Geology Bureau, 2017. (in Chinese)] LI Lihua, ZHEN Fangjun. Investigation report of Yaogou landslide, Chengguan Town, Zhushan County, Hubei Province[R]. Hubei: The 8th Geological Brigade of Hubei Geology Bureau, 2017. (in Chinese)
[17] 冉涛,徐如阁,周洪福,等. 雅砻江流域深切河谷区滑坡类型、成因及分布规律——以子拖西―麻郎错河段为例[J/OL]. 中国地质,2022:1 − 16. (2022-08-22)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1358.014.html. [RAN Tao,XU Ruge,ZHOU Hongfu,et al. Type, formation mechanism and distribution regularity of landslides in the deeply-incised valley area of Yalong River Basin:A case study of Zituoxi–Malangcuo River section[J/OL]. Geology in China,2022:1 − 16. (2022-08-22)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1358.014.html. (in Chinese with English abstract)] RAN Tao, XU Ruge, ZHOU Hongfu, et al. Type, formation mechanism and distribution regularity of landslides in the deeply-incised valley area of Yalong River Basin: A case study of Zituoxi–Malangcuo River section[J/OL]. Geology in China, 2022: 1 − 16. (2022-08-22)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1358.014.html. (in Chinese with English abstract)
[18] 刘帅,王涛,曹佳文,等. 基于优化随机森林模型的降雨群发滑坡易发性评价研究——以西秦岭极端降雨事件为例[J/OL]. 地质通报,2024:1 − 15. (2024-01-19)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240118.1821.002.html. [LIU Shuai,WANG Tao,CAO Jiawen,et al. A case study on susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model, West Qinling Mountains[J/OL]. Geological Bulletin of China,2024:1 − 15. (2024-01-19)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240118.1821.002.html. (in Chinese with English abstract)] LIU Shuai, WANG Tao, CAO Jiawen, et al. A case study on susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model, West Qinling Mountains[J/OL]. Geological Bulletin of China, 2024: 1 − 15. (2024-01-19)[2024-01-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240118.1821.002.html. (in Chinese with English abstract)
[19] 罗阳华. 降雨作用下非饱和残积土坡渗流稳定分析[D]. 福州:福州大学,2016. [LUO Yanghua. Analysis of seepage and stability on unsaturated residual soil slope under rainfall[D]. Fuzhou:Fuzhou University,2016. (in Chinese with English abstract)] LUO Yanghua. Analysis of seepage and stability on unsaturated residual soil slope under rainfall[D]. Fuzhou: Fuzhou University, 2016. (in Chinese with English abstract)