Softening aging characteristics of clayey soil reinforced with cement and polypropylene fibers under water immersion
-
摘要:
文章通过直接剪切试验,研究了水泥和聚丙烯纤维加固粉质黏土的力学特性。同时,采用浸水软化试验模拟了长期降雨对粉质黏土和加固土强度的影响,揭示试样软化后的力学性质和微观结构变化规律。研究表明,加固土的黏聚力与内摩擦角均随着水泥掺量和纤维掺量的增加而增强,但增幅在一定掺量后下降,根据增幅特征,最佳加固材料掺量为6%水泥和0.4%聚丙烯纤维。对采用该配比的试样进行浸水软化试验,发现在浸水初期阶段,由于水化水解反应,土颗粒之间的胶结性增强,土与纤维的紧密结合也进一步使土的黏聚力增加,土中土-水离子能量交换作用使黏粒结合水膜厚度减小,内摩擦角也略有增大;随着浸水时间的增加,土体中的自由水越来越多,导致土粒发生相对移动并进一步分散成块状,但由于水化产物的胶结性和纤维的包裹性较强,土体内部结构还能保持良好的完整性,因此,黏聚力和内摩擦角呈缓慢下降。研究结果可为这类黏性土加固的应用提供重要的力学参数和理论依据。
Abstract:In this paper, the mechanical properties of silty clay reinforced with cement and polypropylene fibers were studied through direct shear tests. Additionally, water immersion softening tests were conducted to simulate the effects of long-term rainfall on the strength of both plain and reinforced soils, revealing the mechanical behaviour and microstructural changes of the samples after softening. The results indicate that the cohesion and internal friction angle of the reinforced soil increase with higher cement and fiber content, but the rate of increase diminishes behind a certain threshold. Based on these findings, the optimal reinforcement composition is determined to be 6% cement and 0.4% polypropylene fibers. Water immersion softening tests conducted on samples with this composition reveal the following characteristics: In the initial stage of water immersion, due to the hydration and hydrolysis reaction, the cementation between soil particles is enhanced, and the close bonding between soil and fibers further increases the cohesion of the soil. Energy exchange between soil and water ions in the soil reduces the thickness of the water film bound to clay particles, slightly increasing the internal friction angle; as the immersion time increases, the accumulation of free water leads to relative movement and dispersion of soil particles into blocks. However, the strong cementation provided by hydration products and the encapsulating effect of fibers maintain the soil's structural integrity, resulting in a gradual decrease in cohesion and internal friction angle. These findings provide critical mechanical parameters and theoretical insights for the application of cement and polypropylene fiber reinforcement in cohesive soils.
-
0. 引言
滑坡灾害是我国最频繁的地质灾害之一[1],其中降雨引发的滑坡约占全部滑坡灾害数量的90%,表现为雨水入渗降低了滑坡稳定性[2]。以舟曲江顶崖大型滑坡为例,其失稳机制与连续强降雨入渗导致的抗剪强度衰减直接相关[3],安前铁矿滑坡[4],寺湾村滑坡[5]、马里科滑坡[6]、恩施沙子坝滑坡[7]等。由于滑带土的力学性能变化直接影响了滑坡的抗剪强度,大量学者针对降雨导致的滑带土软化效应开展了研究,李江等[8]研究了红层滑坡滑带土受降雨影响的软化和泥化特征;蔡国军等[9]发现岩石颗粒力学参数随浸水时间的增加而降低;Liu等[10]研究了泥岩和黏土夹层在饱水和泥化作用下的物理力学性能;Yi等[11]研究发现持续降雨增加了土体饱和度和孔隙水压力,降低了软弱层的力学强度从而引起滑坡。
由于降雨导致滑带土浸润后产生软化效应,导致土体强度降低,一些学者从注浆加固的角度研究了加固材料对土体力学性能的改善效果,彭正华等[12]发现滑带土改良可以采用渗透注浆方式,改善滑坡堆积体与基岩接触面的强度参数;瞿海洋[13]发现在适当掺入水泥后会使黄土抗剪强度增加幅度较大;Ansosry等[14]研究了灌浆对岩土颗粒间的粘结能力和黏聚力的增强。近年来,聚丙烯纤维作为工程应用中的新型加固材料,可以有效提高土体强度,得到了较广泛的应用[15 − 17] 。
由于对滑带土加固后的长期浸水软化效应还缺乏研究,本文基于水泥聚丙烯纤维加固材料,考虑滑带土本身破碎泥化类似黏土的特性,简化为以常规黏性土为例进行浸水软化试验,为这类土体的加固提供基础数据支持。
1. 加固后的粉质黏土抗剪强度
1.1 试验材料
一般情况下,滑带土产生变形蠕动和破坏后会泥化形成黏土质特性,因此试验材料采用与滑带土颗粒级配相似的常规粉质黏土作为试验材料(图1),并根据《土工试验方法标准》对试验材料进行了测试,得到了黏土的物理性质,如表1所示。加固材料采用42.5级普通硅酸盐水泥和聚丙烯纤维,考虑添加聚丙烯纤维后的材料流动性,根据任青阳等[18]、王波等[19]研究,选取了满足试验要求的束状单丝、长度3 mm、直径15 μm的聚丙烯纤维。
表 1 粉质黏土的物理性质Table 1. Physical properties of silty clay最优含水率/% 最大干密度/(g·cm−3) 液限指数/% 塑限指数/% 不同粒径(mm)颗粒分布 13 1.836 19.33 10.3 <0.005 0.005~0.075 0.075~0. 1 0.1~0.25 >0.25 12.2% 51.8% 6% 7% 23% 1.2 试验方案
取一定数量的粉质黏土烘干碾碎,并通过2 mm土工筛,按照最优含水率配置成重塑土,将配制好的土体密封保存24 h,获得粉质黏土试样。水泥加固粉质黏土和水泥聚丙烯纤维加固粉质黏土则掺入一定质量分数的水泥及聚丙烯纤维并充分搅拌混合,参考前人对水泥和聚丙烯纤维改良黏土的研究[21],设置水泥掺量为2%、4%、6%、8%、10%、12%,聚丙烯纤维掺量为0.2%、0.4%、0.6%、0.8%、1%。将粉质黏土试样和按照不同掺量制作好的试样放入环刀(内径61.8 mm、高20 mm)中分层压实,之后置于温度为(20±2) °C、相对湿度为95%的标准养护室内,养护不同天数(0 d、7 d、14 d、28 d)后进行直剪试验,使用四联式电动直剪仪以0.8 mm/min、位移4 mm,对应垂直压力分别为100 kPa、200 kPa、300 kPa、400 kPa,对各试样进行直剪试验。
1.3 试验结果分析
通过直剪试验获得了粉质黏土随水泥掺入量变化的黏聚力和内摩擦角特征(图2),整体上粉质黏土黏聚力和内摩擦角随水泥的掺入量增加而增大。当水泥掺量越多、养护时间越长时,黏聚力和内摩擦角的提升也越大,但当水泥掺量超过6%后,两者的增幅会逐渐减小。以养护时间14 d的试样为例,水泥掺量增加至12%时,黏聚力从18 kPa提高至33 kPa,内摩擦角从22°增加至32°,其中水泥掺量为6%时,黏聚力已增加了82%,内摩擦角增加81%,水泥在前期引起的黏聚力和内摩擦角增幅明显。这是因为在土样中,适当的水泥掺入即可形成富含Ca2+的碱性环境,有利于土中Na+、K+离子与Ca2+之间的能量吸附交换,同时,Ca(OH)2与土中的活性SiO2和AL2O3发生反应,生成了含水的硅酸钙和铝酸钙使土体快速固结,从而大幅提高土体强度。而水泥掺量的继续增多,并不会大幅改变碱性环境和加快反应过程,因此增加水泥掺量后强度增幅也减小,对应水泥掺量为6%时对粉质黏土的力学性能提升幅度最大。
为进一步对比掺加聚丙烯纤维的土体黏聚力与内摩擦角特征,以14 d养护龄期对应试样为参考(图3),发现随着纤维掺入量的增加,水泥土的黏聚力和内摩擦角总体上呈现增大的趋势,当纤维掺量超过0.4%后,两者增大的幅度逐渐减小。以6%水泥掺量的试样为例,随着纤维掺量增加至1%时,黏聚力从30 kPa提高至47 kPa,内摩擦角从30°增加至33°,其中,在纤维掺量达到0.4%时,黏聚力已经增加了80%,内摩擦角增加了74%,表明聚丙烯纤维掺量较小时即可使黏聚力和内摩擦角获得较大提升,这是因为纤维的掺入与土颗粒形成了三维交织的网络,增加了土颗粒之间的摩擦咬合力,而继续增加纤维含量并未继续改变土体结构,因此对应黏聚力和内摩擦角增幅逐渐减小。通过试验发现,粉质黏土掺入6%水泥和0.4%聚丙烯纤维时强度提升率最高。
2. 加固后的粉质黏土饱水软化效应
2.1 饱水软化试验
根据抗剪强度结果,使用6%的水泥掺量和0.4%的聚丙烯纤维掺量来配置加固粉质黏土,试样制备完成后养护14 d,随后在每组试样上下两面各放入一张土工滤纸(直径61.8 mm),再紧贴滤纸放入透水石,并用橡皮筋箍紧后做好标记,之后浸入清水中模拟降雨引起的土体饱水软化过程(图4)。由于降雨型滑坡滞后时间一般为20 d以内[22 − 24],因此将试样分别浸水至5 d、10 d、15 d、20 d后进行抗剪强度试验。考虑到土体强度降低后施加较大垂直压力时,会将土样挤出剪切盒而失去抗剪能力,选取垂直压力为50 kPa、100 kPa、150 kPa、200 kPa,并以剪切速率0.8 mm/min、位移4 mm进行快剪试验,记录剪切数据。
2.2 黏聚力和内摩擦角随饱水时间变化规律
由图5可见,在温度为(20±2) °C、相对湿度为95%的养护条件下,粉质黏土的黏聚力和内摩擦角表现出相对稳定的状态,而浸水后黏聚力和内摩擦角随时间先急剧下降,之后缓慢降低并趋于稳定。在养护及浸水期间,素粉质黏土的黏聚力从18 kPa迅速减小至8 kPa,同时内摩擦角从22°下降至15°,说明浸水对粉质黏土产生了明显的软化作用。
在养护期间,水泥土和水泥聚丙烯纤维土的黏聚力和内摩擦角随时间不断增长。在浸水后两者的黏聚力和内摩擦角均呈现先增加后缓慢下降的趋势,且未出现明显的陡降特征。在浸水至20 d时,水泥聚丙烯纤维土的黏聚力和内摩擦角下降幅度更小,在抵抗土体浸水软化方面能够更好地保持其强度特性。
通过对比粉质黏土和聚丙烯纤维加固土的浸出液化学成分可见(表2),土体中易溶盐溶解和原生矿物质的水解作用,使溶液中阳离子Ca2+和Na+质量浓度(ρ)增大,导致土颗粒间的胶结力解散、接触咬合力减弱且润滑作用增加,表现出黏聚力和内摩擦角的下降,而加固土的水解作用明显减弱使土样强度得到了有效地保持。同时,水泥水化作用使松散土颗粒聚集成团且更加紧密,在加入聚丙烯纤维后,土颗粒与聚丙烯纤维的凹槽充分接触,形成了密实的网状结构,起到了物理加筋的作用,使水泥聚丙烯纤维加固土的黏聚力和内摩擦角有了更大的提高。
表 2 不同浸水天数时土样的浸出液化学成分测试结果Table 2. Test results of chemical composition of leaching solution of soil samples under different immersion periods浸水天数/d ρ(Ca2+)/(mg·L−1) ρ(Na+)/(mg·L−1) 粉质黏土 0 223 50 5 346 500 20 363 510 水泥聚丙烯
纤维加固土0 175 30 5 149 196 20 216 261 2.3 浸水软化后微观结构变化规律
为探究水泥聚丙烯纤维加固粉质黏土的微观结构变化特征,将不同浸水时间(0 d、5 d、20 d)的粉质黏土与掺加6%水泥和0.4%聚丙烯纤维粉质黏土烘干后,使用S-3000N/H型扫描电镜(SEM)对其进行放大500倍的微观结构特征观察(图6)。
通过微观结构对比发现,粉质黏土未浸水土样中呈片状的物质可能是云母类矿物,粗颗粒物质被黏土矿物紧密包裹,且黏土颗粒间胶结物质完好,颗粒结构及孔隙等特征稳定(图6a),图6b为水泥聚丙烯纤维土未浸水的图像,土样表面白色的水泥水化产物使土颗粒内部结构排列更紧密,而聚丙烯纤维在水泥土中起到物理“桥牵”作用,使纤维与水泥胶结土紧密连接。图6c为素土浸水5 d的图像,与图6a相比,可以发现土体之间出现很多孔洞和裂隙。粗颗粒物质周围的黏土矿物被软化,散乱分布在孔隙附近,由初始强度较高的紧密结构变为疏松多孔的松散结构。图6d为水泥聚丙烯纤维土浸水5 d的图像,与图6b相比,可以看出水泥水化作用使土体表面无明显孔隙。纤维与水泥土之间紧密连接,而且纤维未发生断裂,两者起到了很好的相互作用。图6e为素土浸水20 d的图像,随着浸水时间增加,黏土矿物在持续软化作用下已经完全解体并剥落。孔隙的长度和宽度增大,颗粒之间形成架空结构,从完整性较好的土体切割成块状,排列杂乱无章。图6f为水泥聚丙烯纤维土浸水20 d的图像,黏土矿物由片状结构解体成细小颗粒物质,纤维出现裂缝,导致物理支撑作用减弱。但与图6e相比,可以看出水泥的水化产物具有强胶结性,使土体内部结构完整性良好。此外,土体紧密地包裹着纤维,这也从微观角度解释了在浸水后,水泥聚丙烯纤维土抗剪强度较高且下降幅度缓慢的内在机理。
3. 结论
(1)水泥和聚丙烯纤维掺量对粉质黏土的黏聚力和内摩擦角影响较大,加固土的黏聚力与内摩擦角均随着水泥掺量和聚丙烯纤维掺量的增加而增大,但增幅在一定掺量后下降,根据增幅特征,最佳加固材料掺量为6%水泥和0.4%聚丙烯纤维。
(2)粉质黏土、水泥加固土和水泥聚丙烯纤维加固土的黏聚力和内摩擦角随浸水时间增加而降低,粉质黏土黏聚力和内摩擦角先急剧衰减后缓慢下降;水泥土和水泥聚丙烯纤维土在浸水前5 d缓慢增加,随后缓慢下降,且水泥聚丙烯纤维土衰减幅度最低且抗剪强度最高。
(3)导致粉质黏土和加固土抗剪强度差异的原因是,试样浸水软化过程中,粉质黏土与水相互作用时随着黏土矿物的水化作用使土体逐渐软化解体,而水泥聚丙烯纤维土由于水泥产物的强胶结性和纤维的支撑作用,基本保持土体内部结构完整,强度减小不多。
-
表 1 粉质黏土的物理性质
Table 1 Physical properties of silty clay
最优含水率/% 最大干密度/(g·cm−3) 液限指数/% 塑限指数/% 不同粒径(mm)颗粒分布 13 1.836 19.33 10.3 <0.005 0.005~0.075 0.075~0. 1 0.1~0.25 >0.25 12.2% 51.8% 6% 7% 23% 表 2 不同浸水天数时土样的浸出液化学成分测试结果
Table 2 Test results of chemical composition of leaching solution of soil samples under different immersion periods
浸水天数/d ρ(Ca2+)/(mg·L−1) ρ(Na+)/(mg·L−1) 粉质黏土 0 223 50 5 346 500 20 363 510 水泥聚丙烯
纤维加固土0 175 30 5 149 196 20 216 261 -
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2007.03.001 HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001
[2] DHANYA K A,VIBHA S,DIVYA P V. Performance of lateritic soil slopes at the onset of rainfall infiltration[J]. Indian Geotechnical Journal,2023,53(1):107 − 126. DOI: 10.1007/s40098-022-00660-w
[3] 张卫雄,丁保艳,张文纶,等. 舟曲江顶崖大型滑坡成因及破坏机制分析[J]. 防灾减灾工程学报,2022,42(4):714 − 7221. [ZHANG Weixiong,DING Baoyan,ZHANG Wenlun,et al. Analysis on the cause and failure mechanism of the jiangdingya large landslide in Zhouqu,Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(4):714 − 722. (in Chinese with English abstract)] ZHANG Weixiong, DING Baoyan, ZHANG Wenlun, et al. Analysis on the cause and failure mechanism of the jiangdingya large landslide in Zhouqu, Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 714 − 722. (in Chinese with English abstract)
[4] SUN Shuwei,PANG Bo,HU Jiabing,et al. Characteristics and mechanism of a landslide at Anqian iron mine,China[J]. Landslides,2021,18(7):2593 − 2607. DOI: 10.1007/s10346-021-01671-z
[5] WEN Haijia,XIAO Jiafeng,WANG Xiongfeng,et al. Analysis of soil–water characteristics and stability evolution of rainfall-induced landslide:A case of the Siwan Village landslide[J]. Forests,2023,14(4):808. DOI: 10.3390/f14040808
[6] DOGLIONI A,CASAGLI N,NOCENTINI M,et al. The landslide of Pomarico,south Italy,occurred on January 29th 2019[J]. Landslides,2020,17(9):2137 − 2143. DOI: 10.1007/s10346-020-01455-x
[7] SONG Kun,WANG Fawu,ZUO Qingjun,et al. Successful disaster management of the July 2020 Shaziba landslide triggered by heavy rainfall in Mazhe Village,Enshi City,Hubei Province,China[J]. Landslides,2021,18(10):3503 − 3507. DOI: 10.1007/s10346-020-01565-6
[8] 李江,许强,王森,等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报,2016,35(增刊2):4053 − 4062. [LI Jiang,XU Qiang,WANG Sen,et al. Study on rainfall infiltration model and formation mechanism of rock landslide in red bed area of east Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup 2):4053 − 4062. (in Chinese with English abstract)] LI Jiang, XU Qiang, WANG Sen, et al. Study on rainfall infiltration model and formation mechanism of rock landslide in red bed area of east Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 2): 4053 − 4062. (in Chinese with English abstract)
[9] 蔡国军,程宇航,仲闯,等. 千枚岩饱水状态下软化效应试验分析[J]. 科学技术与工程,2021,21(8):3032 − 3038. [CAI Guojun,CHENG Yuhang,ZHONG Chuang,et al. Experimental on softening effect of phyllite in saturated water[J]. Science Technology and Engineering,2021,21(8):3032 − 3038. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2021.08.007 CAI Guojun, CHENG Yuhang, ZHONG Chuang, et al. Experimental on softening effect of phyllite in saturated water[J]. Science Technology and Engineering, 2021, 21(8): 3032 − 3038. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.08.007
[10] LIU Jie,XU Qiang,WANG Sen,et al. Formation and chemo-mechanical characteristics of weak clay interlayers between alternative mudstone and sandstone sequence of gently inclined landslides in Nanjiang,SW China[J]. Bulletin of Engineering Geology and the Environment,2020,79(9):4701 − 4715. DOI: 10.1007/s10064-020-01859-y
[11] YI Xiaoyu,FENG Wenkai,BAI Huilin,et al. Catastrophic landslide triggered by persistent rainfall in Sichuan,China:August 21,2020,Zhonghaicun landslide[J]. Landslides,2021,18(8):2907 − 2921.
[12] 彭正华,焦向阳,石长柏,等. 注浆法处理黄土坡滑坡临江崩滑堆积体深层滑移[J]. 华中科技大学学报(城市科学版),2006,23(增刊1):40 − 42. [PENG Zhenghua,JIAO Xiangyang,SHI C B,et al. Grouting method to treat deep sliding of landslide accumulation body near the river in Huangtupo landslide[J]. Journal of Civil Engineering and Management,2006,23(Sup 1):40 − 42. (in Chinese with English abstract)] PENG Zhenghua, JIAO Xiangyang, SHI C B, et al. Grouting method to treat deep sliding of landslide accumulation body near the river in Huangtupo landslide[J]. Journal of Civil Engineering and Management, 2006, 23(Sup 1): 40 − 42. (in Chinese with English abstract)
[13] 瞿海洋. 水泥改良黄土物理和力学特性试验研究[J]. 湖南交通科技,2021,47(3):35 − 39. [QU Haiyang. Experimental study on physical and mechanical properties of cement improved loess[J]. Hunan Communication Science and Technology,2021,47(3):35 − 39. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-844X.2021.03.008 QU Haiyang. Experimental study on physical and mechanical properties of cement improved loess[J]. Hunan Communication Science and Technology, 2021, 47(3): 35 − 39. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-844X.2021.03.008
[14] ANSOSRY,RAHMAN H A,RAMADHAN F R. Landslide mitigation of Banjir kanal Semarang,with grouting method[J]. Journal of Physics:Conference Series,2019,1387(1):012099. DOI: 10.1088/1742-6596/1387/1/012099
[15] 孙海军. 水泥-纤维改良粉质黏土冻融循环力学特性研究[J]. 粉煤灰综合利用,2022,36(4):106 − 110. [SUN Haijun. Investigations on freeze-thaw cyclic mechanical properties of cement fiber modified silty clay[J]. Fly Ash Comprehensive Utilization,2022,36(4):106 − 110. (in Chinese with English abstract)] SUN Haijun. Investigations on freeze-thaw cyclic mechanical properties of cement fiber modified silty clay[J]. Fly Ash Comprehensive Utilization, 2022, 36(4): 106 − 110. (in Chinese with English abstract)
[16] 阮波,丁茴,邓威,等. 聚丙烯纤维加筋水泥砂浆土三轴压缩试验研究[J]. 铁道科学与工程学报,2021,18(2):359 − 365. [RUAN Bo,DING Hui,DENG Wei,et al. Experimental study on triaxial compression of polypropylene fiber reinforced cement mortar soil[J]. Journal of Railway Science and Engineering,2021,18(2):359 − 365. (in Chinese with English abstract)] RUAN Bo, DING Hui, DENG Wei, et al. Experimental study on triaxial compression of polypropylene fiber reinforced cement mortar soil[J]. Journal of Railway Science and Engineering, 2021, 18(2): 359 − 365. (in Chinese with English abstract)
[17] 庞庆庄. 聚丙烯纤维混合粘土的力学性能试验研究[J]. 吉林水利,2021(11):43 − 47. [PANG Qingzhuang. Experimental study on mechanical properties of polypropylene fiber mixed clay[J]. Jilin Water Resources,2021(11):43 − 47. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-2846.2021.11.010 PANG Qingzhuang. Experimental study on mechanical properties of polypropylene fiber mixed clay[J]. Jilin Water Resources, 2021(11): 43 − 47. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-2846.2021.11.010
[18] 任青阳,张勇,许虎,等. 砂浆中聚丙烯纤维掺量对预应力锚杆锚固性能影响研究[J]. 三峡大学学报(自然科学版),2020,42(6):61 − 67. [REN Qingyang,ZHANG Yong,XU Hu,et al. Study on the influence of content of polypropylene fiber in mortar on the anchoring performance of anchor bolt[J]. Journal of China Three Gorges University (Natural Sciences),2020,42(6):61 − 67. (in Chinese with English abstract)] REN Qingyang, ZHANG Yong, XU Hu, et al. Study on the influence of content of polypropylene fiber in mortar on the anchoring performance of anchor bolt[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(6): 61 − 67. (in Chinese with English abstract)
[19] 王波,文华. 矿渣—粉煤灰地聚物注浆材料的制备及性能优化研究[J]. 金属矿山,2023(3):274 − 278. [WANG Bo,WEN Hua. Research on preparation and performance optimization of slag-fly ash geopolymer grouting material[J]. Metal Mine,2023(3):274 − 278. (in Chinese with English abstract)] WANG Bo, WEN Hua. Research on preparation and performance optimization of slag-fly ash geopolymer grouting material[J]. Metal Mine, 2023(3): 274 − 278. (in Chinese with English abstract)
[20] 李江,许强,胡泽铭,等. 川东红层原状滑带土饱水软化试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):4333-4342. [LI Jiang,XU Qiang,HU Zeming,et al. Experimental study on saturated softening of soil in undisturbed slip zone of red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup 2):4333-4342. (in Chinese with English abstract)] LI Jiang, XU Qiang, HU Zeming, et al. Experimental study on saturated softening of soil in undisturbed slip zone of red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4333-4342. (in Chinese with English abstract)
[21] 刘华勇,钱涛,刘聪,等. 聚丙烯纤维-水泥基稳定土抗剪强度试验研究[J]. 路基工程,2018(2):87 − 90. [LIU Huayong,QIAN Tao,LIU Cong,et al. Experimental study on shear strength of polypropylene fiber-cement based stabilized soil[J]. Subgrade Engineering,2018(2):87 − 90. (in Chinese with English abstract)] LIU Huayong, QIAN Tao, LIU Cong, et al. Experimental study on shear strength of polypropylene fiber-cement based stabilized soil[J]. Subgrade Engineering, 2018(2): 87 − 90. (in Chinese with English abstract)
[22] 常宏,王旭升. 滑坡稳定性变化与地下水非稳定渗流初探——以三峡库区黄蜡石滑坡群石榴树包滑坡为例[J]. 地质科技情报,2004,23(1):94 − 98. [CHANG Hong,WANG Xusheng. Stability variation of a slope associated with transient groundwater flow:A case study on Shiliushu- Bao landslide in Huanglashi landslides,three gor- ges project area,China[J]. Geological Science and Technology Information,2004,23(1):94 − 98. (in Chinese with English abstract)] CHANG Hong, WANG Xusheng. Stability variation of a slope associated with transient groundwater flow: A case study on Shiliushu- Bao landslide in Huanglashi landslides, three gor- ges project area, China[J]. Geological Science and Technology Information, 2004, 23(1): 94 − 98. (in Chinese with English abstract)
[23] 李丽华,刘文,白玉霞,等. 椰壳纤维-石灰协同作用改良黏土性能试验研究[J]. 水文地质工程地质,2025,52(1):130 − 140. [LI Lihua,LIU Wen,BAI Yuxia,et al. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology,2025,52(1):130 − 140. (in Chinese with English abstract)] LI Lihua, LIU Wen, BAI Yuxia, et al. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 130 − 140. (in Chinese with English abstract)
[24] 袁进科,裴钻,杨森林,等. 纳米硅基固沙材料加固机理及抗冲蚀试验研究[J]. 水文地质工程地质,2023,50(6):80 − 89. [YUAN Jinke,PEI Zuan,YANG Senlin,et al. An experimental study of the reinforcement mechanism and erosion resistance of nano silicon-based sand-fixation material[J]. Hydrogeology & Engineering Geology,2023,50(6):80 − 89. (in Chinese with English abstract)] YUAN Jinke, PEI Zuan, YANG Senlin, et al. An experimental study of the reinforcement mechanism and erosion resistance of nano silicon-based sand-fixation material[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 80 − 89. (in Chinese with English abstract)