ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”
排序:
相关度
发表时间
每页显示:
10
20
30
50
摘要:
针对基于泥石流因子评价方法中选取因子不一及训练样本少的问题,提出了一种基于原型网络的沟谷泥石流灾害易发性评价方法。首先,通过元学习方式组织训练数据,计算每一类沟谷的原型中心。其次,计算未知样本与每一类原型中心的距离,得到其从属类别的概率。最后,根据类别概率计算沟谷的泥石流易发性指数,得到泥石流易发性评价等级。运用模型对怒江州的沟谷进行评价,并与历史灾害数据进行比对,分类正确率达到67.39%,历史事件中泥石流灾害严重程度与模型的评价等级吻合度较好。相比传统实地勘测和因子评价等方法,文章方法能够通过遥感影像进行泥石流灾害区域的快速识别与评价,为泥石流灾害的预警预测研究带来新的思路。
摘要:
针对泥石流灾害沟谷图像分类问题,文章对Resnet18网络进行改进,提出了一种改进的卷积神经网络模型。通过在网络结构中加入残差注意力模块,解决了原模型提取图像特征较差、边缘模糊的问题,改进后的网络能精确捕捉到泥石流灾害沟谷图像中的轮廓和内部山脊信息。此外,文章还对多种注意力机制结构进行了实验对比,分析其差异性,得出最适合泥石流灾害沟谷数据分类的注意力机制网络。实验表明改进后的网络模型在泥石流灾害沟谷图像的分类准确率达到75.42%,其分类性能在Resnet18网络模型的基础上提升了5.1%。
摘要:

针对泥石流灾害评估问题,文章提出了一种新的轻量化卷积神经网络模型——融合注意力机制的双通道网络(dual-channel fusion attention mechanism network,DCFAMNet),旨在快速识别沟谷型泥石流灾害。首先,根据历史泥石流点记录,以沟谷数字高程图像(digital elevation map,DEM)及遥感影像为数据源,设计以双通道网络结构为基础技术框架,在DEM图像特征提取通道引入通道注意力机制强调图像特征的网络通道权重,在遥感影像特征通道引入3D卷积块提取沟谷的地表信息,在特征融合阶段利用深度可分离卷积进行更多的特征信息交互。其次,对相关流域的潜在威胁沟谷作出易发性预测,绘制泥石流灾害易发性图。最后,可视化DCFAMNet提取到的沟谷坡向、曲率、坡度等深层特征定位目标关键特征。结果表明,利用DCFAMNet结合GIS技术对泥石流沟谷的识别率可达到80%,AUC值为0.75,表现良好。保存模型最佳参数评估相关沟谷易发性,通过ArcGIS做可视化分析将泥石流灾害分为5个评价等级,并确定泥石流极高易发性,得出高易发区主要分布在贡山县独龙江干流、福贡县怒江干流等水系区域,兰坪县相对较安全。结果可为山区泥石流防灾减灾工作提供有用的参考和依据。